DOI QR코드

DOI QR Code

Slotted Implantable Patch Antenna for ISM Band Application and Its Usage in WiMAX with an I-Shaped Defected Ground Structure

  • Ayubi, Adil Al (Department of Electronics and Communication Engineering, DR. B. R. Ambedkar National Institute of Technology) ;
  • Sukhija, Shikha (Department of Electronics and Communication Engineering, DR. B. R. Ambedkar National Institute of Technology) ;
  • Sarin, Rakesh Kumar (Department of Electronics and Communication Engineering, DR. B. R. Ambedkar National Institute of Technology)
  • 투고 : 2016.08.22
  • 심사 : 2017.07.11
  • 발행 : 2017.12.25

초록

A slotted implantable patch antenna with microstrip feeding is proposed for industrial, scientific, and medical band applications. The result is verified by implanting the antenna in animal tissue. Further, by varying the ground width and introducing a defect into the ground structure, the antenna becomes applicable for worldwide interoperability for microwave access operations. A simulation is performed using Empire XCcel software. An Agilent vector network analyzer is used for analyzing the return loss performance. Simulated and measured results are compared. Antennas with and without defected ground structure both have key advantages including low profile, desirable return loss, good impedance matching and required bandwidth.

키워드

참고문헌

  1. S. A. Kumar, J. N. Sankar, D. Dileepan, and T. Shanmuganantham, Trans. Electr. Electron. Mater., 16, 250 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.5.250]
  2. F. Merli, L. Bolomey, J. F. Zürcher, G. Corradini, E. Meurville, and A. K. Skrivervik, IEEE Trans. Antennas Propag., 59, 3544 (2011). [DOI: https://doi.org/10.1109/TAP.2011.2163763]
  3. C. Liu, Y. X. Guo, and S. Xiao, IEEE Trans. Antennas Propag., 62, 2407 (2014). [DOI: https://doi.org/10.1109/TAP.2014.2307341]
  4. A. Kiourti and K. S. Nikita, IEEE Antenn. Propag. M., 54, 210 (2012). [DOI: https://doi.org/10.1109/MAP.2012.6293992]
  5. F. Merli, L. Bolomey, F. Gorostidi, B. Fuchs, J. F. Zurcher, Y. Barrandon, E. Meurville, J. R. Mosig, and A. K. Skrivervik, IEEE Antenn. Wireless Propag. Lett.,11, 1650 (2012). [DOI: https://doi.org/10.1109/LAWP.2013.2238500]
  6. J. Kim and Y. Rahmat-Samii, IEEE Trans. Microwave Theory Tech., 52, 1934 (2004). [DOI: https://doi.org/10.1109/TMTT.2004.832018]
  7. A.A.S. Rabih, K. M. Begam, T. Ibrahim, and Z. A. Burhanudin, Journal of Medical Research and Development, 3, 107 (2014).
  8. J. Liu, W. Y. Yin, and S. He, Prog. Electromagn. Res., 107, 115 (2010). [DOI: https://doi.org/10.2528/PIER10050904]
  9. L. H. Weng, Y. C. Guo, X. W. Shi, and X. Q. Chen, Prog. Electromagn. Res. B, 7, 173 (2008). [DOI: https://doi.org/10.2528/PIERB08031401]
  10. P. V. Naidu and R. Kumar, J. Microw. Optoelectron. Electromagn. Appl., 14, 1 (2015). [DOI: https://doi.org/10.1590/2179-10742015v14i1422]
  11. K. Siakavara, Microstrip Antennas (INTECH, 2011). [DOI: https://doi.org/10.5772/14676]
  12. G. Breed, High Frequency Electronics, 7, 50 (2008).
  13. E. Hanae, N. A. Touhami, M. Aghoutane, S. E. Amrani, A. Tazon, and M. Boussouis, Prog. Electromagn. Res. C, 55, 25 (2014). [DOI: https://doi.org/10.2528/PIERC14092302]
  14. J. Gemio, J. Parron, and J. Soler, Prog. Electromagn. Res., 110, 437 (2010). [DOI: https://doi.org/10.2528/PIER10102604]
  15. U. M. Mc Carthy, G. Ayalew, F. Butler, K. Mc Donnell, J. Lyng, and S. Ward, Agricultural Engineering International: CIGR Journal(2009).
  16. W. Xia, K. Saito,M. Takahashi, and K. Ito, IEEE Trans. Antennas Propag., 57, 894 (2009). [DOI: https://doi.org/10.1109/TAP.2009.2014579]