• Title/Summary/Keyword: slope failure

Search Result 817, Processing Time 0.029 seconds

Factor of safety in limit analysis of slopes

  • Florkiewicz, Antoni;Kubzdela, Albert
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.485-497
    • /
    • 2013
  • The factor of safety is the most common measure of the safety margin for slopes. When the traditionally defined factor is used in kinematic approach of limit analysis, calculations can become elaborate, and iterative methods have to be used. To avoid this inconvenience, the safety factor was defined in terms of the work rates that are part of the work balance equation used in limit analysis. It was demonstrated for two simple slopes that the safety factors calculated according to the new definition fall close to those calculated using the traditional definition. Statistical analysis was carried out to find out whether, given normal distribution of the strength parameters, the distribution of the safety factor can be approximated with a well-defined probability density function. Knowing this function would make it convenient to calculate the probability of failure. The results indicated that the normal distribution could be used for low internal friction angle (up to about $16^{\circ}$) and the Johnson distribution could be used for larger angles ${\phi}$. The data limited to two simple slopes, however, does not allow assuming these distributions a priori for other slopes.

Analysis of Measurement Data for Stability of Seashore Waste Landfills (해안 폐기물매립지 안정을 위한 계측자료 분석)

  • Jang, Yeon-Soo;Choi, Jong-Sig;Ryu, Hye-Rim;Kim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.947-954
    • /
    • 2008
  • Waste landfills built on weak soils have the possibilities of the failure of slope and foundation due to the disposed waste loads. To ensure the landfill will sustain its stability within a limited site area, it's necessary to investigate and understand the characteristics of soft land by identifying the requirements for waste filling and by quantitative field measurement and management of landfills. In this paper, the stability analyses are performed using the field measurement data of Gimpo #2 Metropolitan Landfil. For the stability analysis, Tominaga-Hashimoto method and Kuriharh method, which may be able to manage the stability of the landfill quantitatively, are used.

  • PDF

Development of a Debris Flow Sensing Device and Real Time Warning System (토석류 감지장치 개발과 실시간 경보체계 구축 사례)

  • Kim, Kyung-Suk;Jang, Hyun-Ick;Chung, Sung-Yun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.273-280
    • /
    • 2008
  • Debris flow has been considered as one of the major natural hazards and possesses tens to hundreds times higher destructive potential than that of slope failure. In the past 5 years, its occurrence frequency was and is likely to increasing due to the global warming. Although various methods such as basin vegetation or structural dams can be implemented to counter measure the debris flow, these methods are not always the right answer to the problem when magnitude of debris flow is far bigger than could be defended. Land use regulations to avoid the hazard or early debris flow warning system to evacuate the expected inundated area can be more economical and practical actions for those cases. In this study, an early debris flow warning system composed of rainfall measuring device, debris flow sensing device and video camera is introduced. The system is designed to issue the warning when rainfall threshold is exceeded or debris flow is sensed by sensing device. Developed monitoring system can be used to cope promptly with the debris flow risk.

  • PDF

A Case Study on Occurrence of Landslide by Heavy Rainfall in Hongcheon Area in 2006 (2006년 집중호우에 의한 홍천지역의 산사태 발생 사례 연구)

  • Kim,, Ho-Jin;Im, Oh-Bin;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.877-882
    • /
    • 2010
  • This paper is a result of investigating causes and main characteristics of landslides, occurred at Hongcheon area in Gangwondo during July in 2006, by collecting relevant data and visiting site. The main cause of landslides in this area has been found to be saturation of the ground wetted by a series of precipitations during 10~13 July and the heavy rainfall during 15 July. The pattern of the landslides could be classified as translational failure, occurred at the boundary between the relatively thin weathered residual soil and the mother rock. By analyzing a number of failed slopes based on site visit and reviewing collected data, typical widths of failed slopes are in the range of 10~20m (minimum: 5m, maximum: 70m). Lengths of landslide area are in the wide range of 10~450m. Most of area are less than 20m in width and 100m in length so that their shapes are long and narrow, frequently observed in Korea, and their areas are relatively small size of around $1000m^2$. The inclinations of the failed slopes are in the range of $10{\sim}60^{\circ}$ while the most probable slope angle is about $20{\sim}25^{\circ}$.

  • PDF

Punching shear failure in pile-supported embankment (성토지지말뚝으로 지지된 성토지반내 펀칭전단파괴)

  • Hong, Won-Pyo;Hong, Seong-Won;Song, Jei-Sang;Lee, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.369-378
    • /
    • 2010
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2{\times}2$ and $3{\times}3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

Strength Characteristics of Soil Cement Reinforced by Natural Hair Fiber

  • Son, Moorak;Lee, Jaeyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.17-26
    • /
    • 2018
  • This study systematically examines the changes in the compressive and tensile strength of soil cement reinforced by natural hair fiber, which is regularly produced from human. Extensive experimental tests of various test specimens have been carried out in a laboratory. Several factors are considered, including the soil type, amount of cement, amount of fiber, fiber length, loading type, and curing age. The test results indicate that both the compressive and tensile strengths are significantly affected by the fiber, either increasing or decreasing depending on the conditions. The increase in tensile strength is significant in the sand-based soil cement due to the tensile resistance of the fiber which is interlocked with the surrounding soil or cement particles. The natural fiber provides a larger strain to failure due to its extensibility, which allows greater deformation. Based on the test results, natural hair fibers can be an effective and environmentally friendly way to improve soil ground subjected to tensile loading, such as an embankment slope, road subgrade, or landfill, thus reducing the cost for cement and waste treatment. The study results provide a useful information of better understanding the mechanical behavior of natural hair fiber in soil cement and the practical use of waste materials in civil engineering. The findings can be practically applied for improving earth structures under tensile loading.

Case study of Cut-slop failure caused by rock anisotropy (암석의 이방성에 기인한 절토사면 붕괴 사례연구)

  • Jung, Young-Kook;Chang, Buhm-Soo;Shin, Chang-Gun;Lee, Yeon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.831-837
    • /
    • 2005
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2\;{\times}\;2\;and\;3\;{\times}\;3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

Molybdenum and Cobalt Silicide Field Emitter Arrays

  • Lee, Jong-Duk;Shim, Byung-Chang;Park, Byung-Gook;Kwon, Sang-Jik
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • In order to improve both the level and the stability of electron emission, Mo and Co silicides were formed from Mo mono-layer and Ti/Co bi-layers on single crystal silicon field emitter arrays (FEAs), respectively. Using the slope of Fowler-Nordheim curve and tip radius measured from scanning electron microscopy (SEM), the effective work function of Mo and Co silicide FEAs were calculated to be 3.13 eV and 2.56 eV, respectively. Compared with silicon field emitters, Mo and Co silicide exhibited 10 and 34 times higher maximum emission current, 10 V and 46 V higher device failure voltage, and 6.1 and 4.8 times lower current fluctuation, respectively. Moreover, the emission currents of the silicide FEAs depending on vacuum level were almost the same in the range of $10^{-9}{\sim}10^{-6}$ torr. This result shows that silicide is robust in terms of anode current degradation due to the absorption of air molecules.

  • PDF

Methodology for Estimating the Number of Failed Fuel Rods in Operating PWRs Using Diffusion and Kinetic Models

  • Lee, Sang-Kyu;Tak, Nam-IL;Kim, Yang-Seok;Chun, Moon-Hyun;Sung, Ki-Bang;Kang, Duck-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.97-102
    • /
    • 1996
  • A methodology for estimating the number of failed fuel rods bused on the primary coolant activity in operating PWRs has been developed. This method deals with both the diffusion and the kinetic models. In case of small or medium cladding failures, the diffusion model which can consider different sizes of failure is used, whereas for large cladding failures the kinetic model is used. From the kinetic model, the release-to-birth rate ratio (R/B) is represented as a linear function of the number of failed fuel rods. This has been done by expressing the escape rate coefficient in terms of the slope of log(R/B) versus $log\;{\lambda}$. The present method has been applied to the cases of 26 cycles of several nuclear power plants for which ultrasonic testings were performed. The results show that the present method gives better predictions than the existing computer codes such as IODYNE and CADE.

  • PDF

Predicting the Failure of Slope by Mathematical Model (수학적 모델을 이용한 사면파괴예측)

  • Han Heui Soo;Chang Ki Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.145-150
    • /
    • 2005
  • It is useful to select an appropriate mathematical model to predict landslide. Through observation and analysis of real-time measured time series, a reasonable mathematic model is chosen to do prediction of landslide. Two theoretical models, such as polynomial function and growth model, are suggested for the description and analysis of measured defermation from an active landslides. These models are applied herein to describe the main characteristics of defermation process for two types of landslide, namely polynomial and growth models. The TRS (tensiof rotation and settlement) sensors are applied to adopt two models, and the data analysis of two field (Neurpjae and Buksil) resulted in good coincidence between measured data and models.