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Molybdenum and Cobalt Silicide Field Emitter Arrays
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Abstract

In order to improve both the level and the stability of electron emission, Mo and Co silicides were formed from Mo
mono-tayer and Ti/Co bi-layers on single crystal silicon field emitter arrays (FEAs), respectively. Using the slope of Fowler-
Nordheim curve and tip radius measured from scanning electron microscopy (SEM), the effective work function of Mo and
Co silicide FEAs were calculated to be 3.13 eV and 2.56 eV, respectively. Compared with silicon field emitters, Mo and Co
silicide exhibited 10 and 34 times higher maximum emission current, 10 V and 46 V higher device failure voltage, and 6.1
and 4.8 times lower current fluctuation, respectively. Moreover, the emission currents of the silicide FEAs depending on
vacuum level were almost the same in the range of 10° ~ 10°° torr. This result shows that silicide is robust in terms of anode

current degradation due to the absorption of air molecules.
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1. Introduction

Metal silicides including Ti [1, 2], Co [2, 3], Nb [4],
Mo [5, 6], Pd [7, 8], Cr [9] and Pt [10] were previously
reported 1n various literatures to improve electron
emission characteristics of Si FEAs. The advantages of
silicide emitters have been mentioned as bwer effective
work function, higher electrical conductivity, and better
chemical and thermal stability than those of silicon
emitters. Table 1 summarizes the results for various
metal-silicide FEAs.

However, due to different emitter structure design and
silicide formation process, the emitter matenials
including silicide phase and emitter structure including
tip radius are not the same. Thus, the results presented in
the literatures were not always consistent. Therefore, it is
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still important to study effective work function, and
emission current characteristics for the silicide emitters,
especially Mo and Co silicides. The properties of Si, Mo,
Co, MoSi, and CoSi, are shown in Table 2.

To obtain the effective work functions, slopes of
Fowler-Nordheim (F-N) curves are drawn and tip radii
are measured by field emission scanning electron
microscopy (FESEM). The emission current fluctuation
and stability at a fixed gate bias and the emission current
depending on vacuum level will be described.

2. Experiments

The 625 tip single crystal silicon(c-Si) FEAs with a
gate opening of 1.4 um were fabricated by dry etching
and sharpening oxidation [11]. Some of the ¢Si FEAs
were split for metal deposition and followed by
annealing for the formation of silicide on emitters. The
Mo silicide was formed by coating with 25-nm thick Mo
mono-layer on Si-tips and subsequent annealing in inert
gas (N,) ambient by rapid thermal processing (RTP) at
1000°C. Coating with Co mono-layer (25 nm), Co/Ti (18
nm/6 nm) and Ti/Co (15 nm/12 nm) bi-layers on Si-tips,
and subsequent annealing by RTP at 800°C, 900°C
and 800°C in inert gas (N,) ambient produced Co
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TABLE 1. Results of various metal-silicide FEAs
Nb silicide
: e Pt silicide Pd silicide e Co silicide Ti1 silicide
(Nb5$13, Mo silicide (PtSi) (Pd,Si) Cr silicide (CoSiy) (TiSi,)
NbSi,)
Num. of tips 3600 100 100 15000 16 10° tips/cm®  10° tips/cm’
Work 31 3.1 4.0 8.31 3.6 2.31 3.58
function (eV) ' (51=4.05) (S1=5.2) 5.0 (Si=4.8) (S1=4.5) (Si=4.34) (Si=4.34)
Turn-on 47 41 62 785 330 180 140
voltage (V) (Si=64) (S1=50) (Si=84) (Si=360) (S1=220) (S1=220)
Maximum 268
current (it A) 32 (Si=230) 350 27 3 0.4 0.35
Failure
voltage (V) 60 129 100 1100 365 265 200
Emitter ) . : : : . :
Triode Triode Triode Diode Diode Diode Diode
structure
Reference [4] [5] [10] [7], [8] [9] [2] [2]
TABLE 2. Properies of Si, Mo, Co, MoSi, and CoSi,
S1 Mo Co MOSi2 COSiz
Crystal structure Diamond Cubic Cubic Tetragonal Cubic-
Density (g/cm3) 2.328 10.221 8.789 6.28 4.95
Melting point (0 C) 1420 2617 1495 2020 1326
5
Electrical 3.1 (6I;<1 gr?nsgii-)cm
resistivity 3 5.78 uQ-cm 7.6 uQd-cm 22 ~ 100 pQ-cm 10 ~ 18 uQ-cm
(p at 300 K) 1.0x10 " £2-cm
(~10" cm™)
p(293K) / p(4.2K) - 1.26 1.91 1380 5
Lattice mismatch _ (s =Prosin=3-203A ‘1.2 %
(") (a5=5.43095) - N Crtosi=7-8554) (g, =3.3654)
Activation energy 3.9 o
(eV) - - - : .
Thermal |
expansion 2.33 5 12 8.25 10.14
Coef. (ppm/°C)
Mc ’ .
tcrohardness _ 191 _ 735 ~ 1200 77 ~552
(kg/mm”) |
Young’s modulus 170 320 210 430 ~ 440 160
(Gpa)
Reference [15] [16] - [19] [20]
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Fig. 1. X-ray diffraction spectra for the (a} Mo/Si and (b) Co/Si, Co/Ti/Si
and Ti/Co/Si annealed in an N, ambient using RTA, after removal of the
unreacted metals.

silicides. After the formation of the silicides, the

unreacted metals and unwanted by-products were
removed by wet etching,

3. Results and Discussion

In order to examine the phase identification of the
metal-Si compounds, X-ray diffraction (XRD) measurement
was performed. It was confirmed that Mo monolayer
and Co mono-layer, Co/T1 and Ti/Co bi-layers were

completely transformed into MoSy and CoSi, phases,
tespectively

as shown in Fig. 1.

SEM is used to analyze the Co silicide samples to
check the surface morphology, thickness uniformity of
Co silicide layers and CoSi/Si interfaces. As shown in
Fig. 2, the sample formed from Ti/Co layer showsa very
flat surface, uniform thickness of about 39 nm and
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(b)

Fig. 2. SEM cross sectional views of Co-silicides formed by coating (a)
Co(250 A), (b) Co(180 A)/Ti(60 A), and (c) Ti(150 A)/Co(120 A) layers
and annealing 800°C, 900C, and 800 C, respectively.

smooth interface, because Ti prevents oxygen adsorption
on the Co film during silicide formation [12]. However,
the sample formed from Co mono-layer shows a rough
surface and agglomeration due to adsorption of oxygen
on the Co film. The quality of the silicide formed from
Co/Ti layers in terms of surface roughness and thickness
uniformity is in-between the two competitive samples,
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(c)
- Fig. 3.

(d)

(e)

SEM micrographs for the fabricated (a) ¢ -Si emitter, (b) Mo silicide emitter and C o silicide emitter formed from (c) Co,

(d) Co/Ti, and (e) Ti/Co. The tip apex of Mo and Co silicide tips became blunt compared with that of ¢ -Si tip.

as shown 1n Fig. 2 ambient using RTA, after removal of
the unreacted metals.

Fig. 3 shows SEM photographs of c¢-Si emitter, Mo
silicide emitter and Co-silicide emitters formed on ¢-Si.
Compared with c-Si emitter, the gate metal surface of
Mo silicide emitter 1s somewhat made rough. The
measured radi1 of silicon, Mo silicide, Co/Ti and Ti/Co
tips were 35 A, 50 A, 115 A and 80 A with 10% error,
respectively. The Mo silicide tip is much sharper than the
Co silicide tips. The Ti/Co tip is the sharpest among the
Co silicide emitters, although all the silicide tips are not
as sharp as the initial c-Si-emitter.

Field emission properties of the fabricated emitters
were characterized in an ultra high vacuum chamber at a
base pressure of 6.6x10” torr. Prior to the test, samples
were heated for 10 hours at 250°C to remove residual gas
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including water vapor adsorbed on tip surfaces. The
anode plate was 3 mm above the gate top and biased to
+300 V. Figure 4 shows the I-V characteristics of c-Si
and the silicide emitters with 625 tips. Fig. 4(a) shows
that the anode currents at the gate voltage 100 V for the
Mo silicide and the ¢-Si emitters are 176 pA and 21 pA,
respectively. The Mo silicide emitters have lower turn-on
voltage of about 8V than that of silicon emitters. As
shown in Fig. 4 (b), Co silicide emitters formed from a
Co mono-layer using RTA show about 46 V higher turn-
on voltage than c-Si emitters and have high gate current
which is about 38.5% of the anode current at the gate
voltage of 150 V, due to tip blunting and rough surface,
as shown in Fig. 3(c). In Fig. 4(c), the anode current
from c-Si, Co/Ti and Ti/Co emitters are compared. The
gate currents of silicon, Mo silicide, Co/Ti and Ti/Co
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Fig. 4. 1I-V curves taken from c-Si FEAs, (a) Mo silicide FEAs and Co
silicide FEAs formed from (b) Co mono-layer, (¢) Co/Ti and Ti/Co bi-layers

based on ¢-Si with 625 tips.
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Fig. 5. F-N plots for (a) the Mo silicide and (b) the Co silicide FEAs The
slopes of F-N curve of ¢-Si, Mo silicide, Co, Co/Ti and Ti/Co emitters are
0.4058 A/V, 0.3925 A/V, 0.4195 A/V, 0.6015 A/V, 0.6319 A/V and 0.4725
A/V, respectively. A/V stands for ampere/volt.

FEAs were less than 1.0%, 1.0%, 11.3% and 2.9% of the
anode current, respectively. The required gate voltages of
silicon, Mo silicide, Co/Ti and T1/Co emtters to obtain
anode current of 30 uA are 104 V, 86 V, 118 V and 109 V,
respectively.

The device failure voltage is the voltage at which short
occurs between gate metal and cathode tip. The device
failure voltages of silicon, Mo silicide, Co/T1 and Ti/Co
emitters were 106V, 116V, 148V and 152V, respectively.
Our SEM study indicates that the emitter failure 1s due to
arc between tip and gate electrode. Although the turn-on
voltage of Co silicide formed from Ti/Co btlayers tis
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higher than that of silicon emitters due to tip blunting
(lower field conversion factor, £ =1/5r), the silicide
FEAs demonstrate the highest device failure voltage of
152 V and emission current of ImA, as shown in Fig,.
4(c), due to low electrical resistivity, high thermal
conductivity, and smooth gate surface morphology [13].

Using Fowler-Nordheim(F-N) theory for the electron
emission, the work function(¢ ) can be written as the
following equation [13, 14].

¢:[ b V3 . 2/3
0958 0.95B x loge x 5r (1)

Where B is 6.87x10’, f is the field conversion factor,
r 1s the tip radius and § is the slope of F-N curve.

From the slope of Fowler-Nordheim plots in Fig. 5
and the tip radii measured from SEM photographs in Fig.
3, the effective work functions of ¢-Si, Mo silicide and
Co/T1 and Ti/Co emitters are about 4.06 eV, 3.13 eV,
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Iave 1s the average anode current during the measurement.
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2.46 eV and 2.56 eV, respectively, which are similar to
the previously reported results [2, 5].

The emission current variations of the Mo silicide
FEAs normalized with average anode current at a fixed
gate bias during 12 minutes ranged from-7.1% to +8.1%.
In the case of Co silicide FEAs formed from Co, Co/Ti
and Ti/Co, the variations ranged from —-13.2% ~ +15.8%,
—16.9% ~ +17.2% and —-8.9% to +10.3%, respectively.
The variation of silicon FEAs ranged from —37.1% to
+55.3%, as shown in Fig. 6. The notable reduction of
emission current variation in the silicide FEAs suggests
that the silicide emitters are less influenced by gas
adsorption and desorption and/or the destruction of sharp
emission site than silicon emitters.

For the practical applications of field emitter arrays, it
is essential to investigate the vacuum dependence
of emission characteristics, because field emission
properties depend sensitively on the work function
change of the emitter surface by gas absorption [13].
Figure 7 shows experimental results on the change of the
emission current depending on the vacuum level. The
emission current of the ¢-Si FEAs decreases 1n the range
of 10”7 ~ 10 ® torr. However, the currents of Mo silicide
and Co silicide formed from Ti/Co are almost identical
over the same range. This result shows that silicide is
robust in terms of anode current degradation due to the
absorption of air moleculges.

In order to observe the inertness of the siliade
emitters to air molecules, the emitters were opérated at
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Fig. 7. Anode currents of Si, Mo silicide and Co silicide formed from
Ti/Co FEAs with 625 tips depending on the vacuum level.
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high vacuum level of 10 torr (period I) and the pressure
was increased up to 10° torr by supplying room air
(period II). Then the vacuum level was further increased
to 10” torr (period III). During period II in Fig. 8, the
emission current of the silicide FEAs gradually decreases
and then remains constant. On the other hand, the current
of ¢-Si FEAs inconsistently changes. This is thought to
be due to the formation and deformation of native oxide,
and/or the absorption and desorption of unwanted gas.
The anode current of Mo silicide FEAs was completely
recovered back to the original value when the pressure
was reduced to 10° torr, whereas those of Si FEAs and
Co silicide FEAs formed from Ti/Co were not recovered
by merely reducing pressure. After baking for 20
minutes at 250 °C, and under the pressure of 10 torr,
anode currents of Si and Co silicide FEAs were increased.
However, the anode currents of Si1 and Co silicide FEAs
did not completely return to their original values
probably due to incompletely desorption of air molecules
at the baking temperature and/or tip surface modification
during device operation, as shown at period III in Fig.8.

4. Conclusions

The Mo silicide FEAs can be obtained by depositing
Mo mono-layer on ¢-Si tip and its annealing. Co silicides
were formed from Co, Co/Ti and Ti/Co layers on ¢Si
FEAs. Uniform and smooth Co silicide layers can be
obtained by depositing Co first and then Ti on silicon
tips, followed by rapid annealing. Compared with ¢-Si
field emitters, the silicide FEAs exhibited higher
emission current, higher failure voltage, less emission
fluctuation and better stability to vacuum environments.
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The better emisston characteristics of the silicide emitters
can be explained in terms of their lower effective work
function, their lower electrical resistivity and their better
surface inertness than those ofthe silicon emitters.
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