• Title/Summary/Keyword: slip-form system

Search Result 35, Processing Time 0.206 seconds

A Study on the Determination of Setting Time of Concrete in the Determination of Slip-up Speed for Slip-Form System (슬립폼 시스템 상승속도 결정에 요구되는 콘크리트에서의 초기경화시간 결정을 위한 연구)

  • Kim, Heeseok;Kim, Young-Jin;Chin, Won-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.295-302
    • /
    • 2011
  • The setting time which is the important element for the determination of slip-up speed of Slip-Form system is the hardening time of early-age concrete when the in place concrete has minimum compressive strength before the concrete appears out of Slip-Form system. But it is very difficult to predict the setting time because it depends on not only the composition ratio of concrete but also various conditions of construction fields. Thus, the technique to estimate accurately and continuously the hardening time of early-age in place concrete during operating Slip-Form system is necessary to guarantee the safety of Slip-Form system and the maintenance of the shape of concrete. Ultrasonic wave-based nondestructive testing methods have the advantages which are accurate and continuous in estimating concrete compressive strength. Of such methods, the method using surface wave which propagates along the surface of material is effective for thick member such as a pylon. Thus, in this paper a study on the determination of slip-up speed for Slip-Form system using surface wave velocity is performed. The relation between the slip-up speed of Slip-Form system and the setting time is formulated, and the surface wave velocity is estimated from continuous wavelet transform of the numerical results for surface wave propagation. Finally, the accuracy of this method according to the distance between the wave source and receivers and the relation between the estimated surface wave velocity and the elastic modulus are investigated.

A Study on the Determination of Slip-up Time for Slip-Form System using Surface Wave Velocity (표면파 속도를 이용한 슬립폼 시스템 상승 시기 결정에 관한 연구)

  • Kim, Heeseok;Kim, Young Jin;Chin, Won Jong;Yoon, Hyejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.483-492
    • /
    • 2012
  • The early setting time of concrete is an important factor determining the slip up velocity of the slip-form system. Accordingly, need is for a technique evaluating the early setting time in order to secure the safety of the slip-form system and the construction quality of concrete. This paper intends to estimate the early setting time by evaluating the setting degree of concrete using surface wave velocity so as to determine the slip up time of the slip-form system. Penetration resistance test and compressive strength test are performed first to clarify the relationship between the early setting time of concrete and the compressive strength. Then, compressive strength test and ultrasonic wave test are conducted to examine the relation between the compressive strength and the surface wave velocity. Continuous wavelet transform is adopted to measure the surface wave velocity. Numerical analysis is carried out to demonstrate the appropriateness of the application of continuous wavelet transform. Based on these results, the propagation velocity of the surface wave required for the slip up of slip-form system is suggested. Finally, a reduced model test of the slip-form system is conducted to verify the feasibility of the proposed surface wave velocity for the determination of th slip up velocity.

Structural Behavior of Wall-Type Structure with the Application of Slip-Form System (슬립폼 공법으로 건설된 벽식 구조의 거동에 관한 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.157-168
    • /
    • 1995
  • The structural performance of Slip-Form system was examined to make use of many advantages of fast construction and high quality c0ncret.e. However, the separate cor~struction of wall and slabs may cause some weaknesses around the wall-slab connection region. Thus, the purpose of the study is to examine the structural performance of wall-type structure constructed by Slip-Form method and to develop an efficient connection system between wall and slabs. In order to investigate the system, 7 wall specimens and 8 wall-slab joint specimens were tested and the experimental results were compared with the design equations and theoretical analysis. A satisfactory performance was obtained from the wall specimen tests. However, wall-slab joint specimens with rebar connection materials I Ilalfen] were shown that. the strength of' wall should be checked during design porocess.

A Study on the Design of the Slip-Form System for the Construction of Tapered Concrete Pylons (변단면 콘크리트 주탑공사의 슬립폼 시스템 적용을 위한 설계기술 연구)

  • Yoon, Hyejin;Kim, Young Jin;Chin, Won Jong;Kim, Hee Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.128-135
    • /
    • 2014
  • This paper studied design of slip form system considering the erection of a pylon mock-up. The height of the pylon is 10 m. A rectangular hollow cross-section was considered. The outer and inner dimensions of the pylons were varied with respect to the height. The thickness of 1 sides among the 4 faces were varied. Accordingly the slip form was designed to respond to continuous changes in its dimensions and thickness. Structural analysis was conducted to examine structural safety of the slip form. Virtual construction by BIM proved its practicality. The developed design technologies were successfully applied to the erection of a 10m high pylon executed for field verification test.

Critical Moisture and Pore Structure of Clay Based Consolidated Body (점토계 고형화소지의 임계함수율과 기공구조)

  • 이기강;박천주;김유택;김석범;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.528-534
    • /
    • 1997
  • There have been many studies on the preparation of slip, forming and drying in the slip casting process. However, is has not been yet on the rheological properties of consolidated body which largely affect on the workability. It was investugated that the rheological properties of the consolidated bodies formed by slip casting in the form of cakes from well dispersed(slip C) and weakly agglomerated slip(slip B) in the clay and clay-fly ash systems. The state of dispersion of slip was found to affected the critical moisture content which was largely affected by the pore and moisture distribution of the consolidated body. The cake C show lower critical moisture content than cake B in the clay system. However, the cake B gives lower critical moisture content than cake C in the clay-fly ash system.

  • PDF

Push-out test on the one end welded corrugated-strip connectors in steel-concrete-steel sandwich structure

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • Current form of Corrugated-strip connectors are not popular due to the fact that the two ends of this form need to be welded to steel face plates. To overcome this difficulty, a new system is proposed in this work. In this system, bi-directional corrugated-strip connectors are used in pairs, and only one of their ends is welded to the steel face plates on each side. The other end is embedded in the concrete core. To assemble the system, common welding devices are required, and welding process can be performed in the construction sites. By performing the Push-out test under static loading, the authors experimentally assess the effects of geometric parameters on ductility, failure modes and the ultimate shear strength of the aforesaid connectors. For this purpose, sixteen experimental samples are prepared and investigated. For fifteen of these samples, one end of the shear connectors is welded to steel face plates, and the other end is embedded in the concrete. Another experimental sample is prepared in which both ends are welded to the steel face plates. According to the achieved results, several relations are proposed for predicting the ultimate shear strength and load vs. interlayer slip (load-slip) behavior of corrugated-strip connectors. Moreover, these formulas are compared with those of the well-known codes and standards. Accordingly, it is concluded that the authors' relations are more reliable.

Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment (임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석)

  • Jang, Doo-Ik;Jeong, Seung-Mi;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

Three-Dimensional Steady-state Rolling Contact Analysis using Finite Element Method (3차원 유한요소법을 이용한 정상상태의 구름접촉해석)

  • Lee, Dong-Hyong;Seo, Jung-Won;Kwon, Seok-Jin;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.565-571
    • /
    • 2011
  • Because most fatigue cracks in wheel and rail take place by rolling contact of wheel and rail in railroad industry, it is critical to understand the rolling contact phenomena, especially for the three-dimensional situation. This paper presents an approach to steady-state rolling contact problem of three-dimensional contact bodies, with or without tangential force, based on the finite element method. The steady-state conditions are controlled by the applied relative slip and tangential force. The three-dimensional distribution of tangential traction and contact stresses on the contact surface are investigated. Results show that the distribution of tangential traction and contact stresses on the contact surface varies rapidly as a result of the variation of stick-slip region. The tangential traction is very close in form to Carter's distribution.

A Study on the ECU and Control Algorithm of ABS for a Commercial Vehicle

  • Lee, Ki-Chang;Kim, Mun-Sub;Jeon, Jeong-Woo;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.166.1-166
    • /
    • 2001
  • Anti-lock Braking System(ABS) is a device which prevents the wheels form locked up under emergency braking of a vehicle. So it helps the vehicle to maintain the steerability and shortens the braking distance by maintaining optimal frictional force during braking since the tire road slip is controlled in acceptable range. Recently, ABS is accepted as a standard equipment in vehicles, especially in commercial vehicles(bus and trucks). Commercial vehicles don´t use hydraulic lines but use pneumatic lines for braking system mostly. In this paper, ECU(Electronic Control Unit) for the anti-lock braking system of a commercial vehicle which is equipped with a full-air brake system and its control algorithms are presented. In this algorithm wheel speed acceleration flags and wheel slip flags are defined ...

  • PDF