• Title/Summary/Keyword: slip coefficient

Search Result 273, Processing Time 0.031 seconds

Control Scheme Using Forward Slip for a Multi-stand Hot Strip Rolling Mill

  • Moon, Young-Hoon;Jo, I-Seok;Chester J. Van Tyne
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.972-978
    • /
    • 2004
  • Forward slip is an important parameter often used in rolling-speed control models for tandem hot strip rolling mills. In a hot strip mill, on-line measurement of strip speed is inherently very difficult. Therefore, for the set-up of the finishing mill, a forward slip model is used to calculate the strip speed from roll circumferential velocity at each mill stand. Due to its complexity, most previous researches have used semi-empirical methods in determining values for the forward slip. Although these investigations may be useful in process design and control, they do not have a theoretical basis. In the present study, a better forward slip model has been developed, which provides for a better set-up and more precise control of the mill. Factors such as neutral point, friction coefficient, width spread, shape of deformation zone in the roll bite are incorporated into the model. Implementation of the new forward slip model for the control of a 7-stand hot strip tandem rolling mill shows significant improvement in roll speed set-up accuracy.

The Effect of Floor Slipperiness on Gait Characteristic (바닥의 미끄럼 저항이 보행 특성에 미치는 영향)

  • Kim, Tack-Hoon;Han, Seok-Kyu;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.133-141
    • /
    • 2015
  • The floor slipperiness is an essential property for the pedestrian safety. This study was conducted to develop the slip test apparatus to be well accorded with actual characteristics of human gait; and the correlation between RCOF (Required coefficient of friction), Rz (Surface roughness), and 3 coefficients of slip resistance (C.S.R (Coefficient of slip resistance), BPN (British pendulum number), and SCOF (Static coefficient of friction)) were analyzed. Result of the analysis revealed that the cadence, stride length, and step length were proportional to the walking speed, and the significant correlation between walking speed and RCOF was found. However, the correlation between RCOF and the other respective coefficients of slip resistance was almost unidentified thus it would be difficult to identify the actual property of floor slipperiness with the RCOF alone.

Development of Forward Slip Model in Hot Strip Mill (강판의 열간압연 선진율 예측모델의 개발)

  • 문영훈;천명식;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1597-1603
    • /
    • 1995
  • A prediction model on forward slip has been developed for presetting rolling speed of each finish mill stand in the continuous hot strip roduction. Those factors such as neutral point, friction coefficient, volume fractions undergoing width spread, shape of deformation zone at each side of entry and delivery of the rolls were taken into account. To reduce the speed unbalance between adjacent stands a refining method of adjusting friction coefficient has also been developed. On-line application of the model showed a good agreement in rolling speeds between the predictions and the actual measurements, and gave an outstanding improvement in the travelling stability of strip passing through the finishing mill train.

Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation (고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정)

  • Shin, Dong-Hwan;An, Jin-Ung;Moon, Jeon-Il
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

Disturbance Observer Based Anti-slip Re-adhesion Control for Electric Motor Coach

  • Miyashita, Ichiro;Kadowaki, Satoshi;Ohishi, Kiyoshi;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a new anti-slip re-adhesion control system fur electric railway vehicle driven by inverter-fed induction motors. This paper introduces an instantaneous tangential farce coefficient estimator between driving wheel and rail, which is based on disturbance observer. The torque command of proposed system regulates to exceed this estimated tangential farce coefficient in order to avoid undesirable slip phenomenon of driving wheels. We have already proposed the anti-slip re-adhesion control system based on disturbance observer for simplified one wheel equivalent model successfully. This paper extend to this system to the actual bogie system, which has four driving wheels driven by two induction motors fed by one inverter. In order to apply anti-slip re-adhesion control to the actual bogie system a new anti-slip re-adhesion control based on both disturbance observer and speed sensor-less vector control of induction motor with quick response are combined. The experimental results and the numerical simulation results prove the validity of the proposed control system.

  • PDF

A Study of ADS Slip Ratio Control using Solenoid Valve (전자밸브를 이용한 ABS 슬립율 제어에 관한 연구)

  • Choi, Jong-Hwan;Kim, Sung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF

Stick-slip vibration analysis by using statistical friction model and accuracy verification of the friction model (통계적 마찰 모델을 활용한 stick-slip 진동 해석과 정확성 검증)

  • Yoo, Hong Hee;Kang, Won Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.830-832
    • /
    • 2014
  • In this study, friction stick-slip vibration're interpretation of the phenomenon, we used a statistical model of friction. In a previous study using a definite friction factor, but to a dynamic simulation using a constantly changing during the integration time by a Monte Carlo simulation method, not the average coefficient of friction and the dynamic friction coefficient and a constant value in this study.

  • PDF

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

Biomechanical Analysis of the Non-slip Shoes for Older People (미끄럼방지 노인화에 대한 생체역학적 분석)

  • Lee, Eun-Young;Sohn, Jee-Hoon;Yang, Jeong-Hoon;Lee, Ki-Kwang;Kwak, Chang-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.377-385
    • /
    • 2013
  • Fall is very fatal accident causes death to older people. Shoe may affect to fall. Shoe influences risk of slips, trips, and falls by altering somatosensory feedback to the foot. The purpose of this study was to investigate the analysis of non-slip shoes for older people and influence on older people's lower extremity. For this study twenty three healthy older people were recruited. Each subjects walked over slippery surfaces (COF 0.08). Four pairs of non-slip shoes (shoe A had the greatest COF, 0.23 while shoe B, C, and D had smaller COF relatively) for older people were selected and tested mechanical and biomechanical experiment. For data collection motion capture and ground reaction forces were synchronized. There were statistically significant differences for slip-displacement, coefficient of friction, braking force, propulsion force, knee range of motion and knee joint stiffness by shoes. It was concluded that shoe A was the best for non-slip function because of the lowest slip displacement, the highest braking and propulsion forces, and the highest mechanical and biomechanical coefficient of friction where as shoe B, C, D were identified as a negative effect on the knee joint than shoe A. To prevent fall and slip, older people have to take a appropriate non-slip shoes such as shoe A.

A Study on the Slip Behavior of Coated High Tension Bolted Joints (도장처리한 고장력볼트 연결부의 미끄러짐 특성에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Kim, Ki Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.691-697
    • /
    • 2008
  • Coating the high tension bolted frictional joint has been generally allowed for anti-corrosion purpose. However in case of painting on paying surface of the high tension bolt, the influence on a slip strength of the joint depending on precision of painting has remained controversial. The study thus was intended to identify the slip behavior on high tension bolted frictional joint when applying ceramic painting, which has been currently developed. A slip test was conducted on a high tension bolted frictional joint specimen on which ceramic painting has been applied and a slip load and slip coefficient were measured. Based on result, the safety and usability of ceramic painting-applied high tension bolted frictional joint was evaluated. As a result, a difference to some extent by specimen in terms of load-displacement when a slip occurred was observed but an average slip coefficient appeared to have exceeded 0.4, which is the design frictional coefficient set forth in the specification. To secure the safety and usability of ceramic painting-applied high tension bolted frictional joint, it's necessary to establish the standard for painting as well as to revise the relevant specification.