• 제목/요약/키워드: sliding velocity

검색결과 372건 처리시간 0.023초

불확실성을 갖는 단일 링크 탄성 Arm의 슬라이딩 모드 제어 (Sliding mode control of a single-link flexible arm with uncertainties)

  • 신호철;김정식;최승복;정재천
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.546-551
    • /
    • 1993
  • A new robust sliding mode controller is formulated for the tip position control of a single-link flexible manipulator with parameter variations. After establishing the plant model characterized by a noncollocated uncertain control system, a sliding surface which guarantees stable sliding mode motion is synthesized in an optimal manner. The surface is then modified to adapt arbitrarily given initial conditions. A discontinuous control law associated with the modified surface is designed by restricting that velocity state variables are not available from direct sensor measurements. Using the proposed control law favorable system responses are accomplished through shortening the reaching phase of state trajectory without increasing maximum control torque as well as undesirable chattering. Furthermore, a low sensitiveness to uncertainties is obtained from inherent salient properties of the proposed control system. Computer simulations are undertaken in order to demonstrate these superior control performance characteristics to be accrued from the proposed methodology.

  • PDF

FIB를 이용한 트라이보층에 대한 연구 (A Study on the Tribolayer using Focused Ion Beam (FIB))

  • 김홍진
    • Tribology and Lubricants
    • /
    • 제26권2호
    • /
    • pp.122-128
    • /
    • 2010
  • Focused Ion Beam (FIB) has been used for site-specific TEM sample preparation and small scale fabrication. Moreover, analysis on the surface microstructure and phase distribution is possible by ion channeling contrast of FIB with high resolution. This paper describes FIB applications and deformed surface structure induced by sliding. The effect of FIB process on the surface damage was explored as well. The sliding experiments were conducted using high purity aluminum and OFHC(Oxygen-Free High Conductivity) copper. The counterpart material was steel. Pin-on-disk, Rotational Barrel Gas Gun and Explosively Driven Friction Tester were used for the sliding experiments in order to investigate the velocity effect on the microstructural change. From the FIB analysis, it is revealed that ion channeling contrast of FIB has better resolution than SEM and the tribolayer is composed of nanocrystalline structures. And the thickness of tribolayer was constant regardless of sliding velocities.

출력 피드백을 이용한 회전형 역진자의 슬라이딩 모드 제어 (Sliding Mode Control of Rotational Inverted Pendulums Using Output Feedback Compensator)

  • 하종헌;최정주;김종식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.469-474
    • /
    • 2000
  • A sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback and reduced observer is presented for rotational inverted pendulums. This control strategy overcomes the problem of unattainable velocity state which is resulted from severe noise of analogue sense and constructs numerical algorithms designs of dynamic output feedback sliding mode hyperplane and controller. The result of the experiment shows the superior performance compared with the LQ controller and the robustness with respect to both tapping disturbances and certain initial conditions.

  • PDF

반응소결 탄화규소의 접동조건에 따른 마찰계수 및 미세구조 (Friction Coefficient and Microstructure of Reaction-Bonded Silicon Carbide According to Sliding Conditons)

  • 김호균;김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제32권7호
    • /
    • pp.825-831
    • /
    • 1995
  • Reaction-bonded SiC-Si material was fabricated by infiltration of Si melt into a mixture of $\alpha$-SiC and carbon at 175$0^{\circ}C$ under the vacuum atmosphere. Wear properties were analyzed by ball-on-plate wear tester, changing loading weight, sliding speed, sliding time and atmosphere, Results showed that the friction coefficient was decreased with increasing load and sliding velocity. The lowest friction coefficient of 0.05 was obtained under an oil atmosphere. The analysis of the wear surface indicated that the areas wehre particles were pulled out and where free silicon particles worn out preferentially serve as liquid reservoirs to decrease the wear resistance.

  • PDF

확장형 감소차수 관측기를 이용한 전기식 조종날개 구동장치의 슬라이딩 모드 제어 (A sliding mode control of an electro-mechanical fin actuation system using extended reducer-observer(ERO))

  • 구정회
    • 한국군사과학기술학회지
    • /
    • 제8권3호
    • /
    • pp.92-100
    • /
    • 2005
  • The objective of this paper is to design a sliding mode controller of an electro-mechanical fin actuation system using extended reducer-observer(ERO) which is used in order to estimate the velocity. The employed observer enables proper estimation of the plant state variables, even in the case of the constant or slow varying load torque disturbances. The effectiveness of this control scheme is verified by comparison with a PID control through a series of simulation studies. The simulation results show that the sliding mode control designed with the ERO gives good control performances.

Analysis of the Effects of SD Plasma on Aerodynamic Drag Reduction of a High-speed Train

  • Lee, Hyung-Woo;Kwon, Hyeok-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1712-1718
    • /
    • 2014
  • Experimental analysis according to the plasma actuator design variables was performed in order to verify the effects of sliding discharge plasma on aerodynamic drag reduction of a high-speed train. For the study, sliding discharge plasma actuator and high-frequency, high-voltage power supply were developed and experimented to figure out the best design variables for highest ionic wind velocity which could reduce the drag force. And then, 5% reduced-scale model of a high-speed train was built for wind tunnel test to verify it. From the results, it was confirmed that sliding discharge plasma had contribution to reduce the drag force and it had the potential to be applied to real-scale trains.

Sliding Wear and Corrosion Resistance of Copper-based Overhead Catenary for Traction Systems

  • Kwok, C.T.;Wong, P.K.;Man, H.C.;Cheng, F.T.
    • International Journal of Railway
    • /
    • 제3권1호
    • /
    • pp.19-27
    • /
    • 2010
  • In the present study, the electrical sliding wear and corrosion resistance of pure copper (Cu) and six age-hardened copper alloys (CuCr, CuZr, CuCrZr, CuNiSiCr, CuBe and CuBeNi) were investigated by a pin-on-disc tribometer and electrochemical measurement. Various copper-based alloys in the form of cylindrical pin were forced to slide against a counterface stainless steel disc in air under unlubricated condition at a sliding velocity of 31 km/h under normal load up to 20 N with and without electric current. The worn surface of and wear debris from the specimens were studied by scanning electron microscopy. Both mechanical wear and electrical arc erosion were the wear mechanisms for the alloys worn at 50 A. Owing to its good electrical conductivity, high wear and corrosion resistance, CuCrZr is a promising candidate as the overhead catenary material for electric traction systems.

  • PDF

침탄처리한 Ni-Cr-Mo강의 마찰-마모특성 (Friction-Wear Properties of Carburized SNCM)

  • 백승호
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.159-167
    • /
    • 1998
  • In this study, friction-wear test was carried out on the carburized layer depth of a mechanical structure steel SNCM carburized with RX and LPG for 7hrs at $930^{\circ}C$ and also the wear properties of wear loss, wear rate, coefficient of friction, friction force and friction temperature were investigated. The wear properties for carburized layer of SNCM were tested on dry condition at the room temperature by the thrust load of 49~245N range at sliding speed of 0.2m/sec and the sliding speed of 0.2~1.0m/sec range at thrust load of 98N. Wear loss on the depth of carburizing layer was increased with increasing of thrust load and sliding speed, and with decreasing of hardness. The condition of worn surfaces were showed mild wear at less than the thrust load of 98N and sliding speed of 0.6m/sec but were showed severe wear at more than 98N and 0.6m/sec. The friction load and temperature were increased with increasing of thrust load but with increasing sliding speed was appeared minimum at 0.6m/sec. With increasing thrust load the wear rate was increased and the coefficient of friction was decreased, but with increasing sliding speed the wear rate and the coefficient of friction were decreased in 0.2~0.6m/sec and increased in 0.6~1.0m/sec, therefore 0.6m/sec in this testing is a transition velocity.

  • PDF

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique

  • Dung, Ngo Manh;Duy, Vo Hoang;Phuong, Nguyen Thanh;Kim, Sang-Bong;Oh, Myung-Suck
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.283-294
    • /
    • 2007
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundizing function is proposed and applied to a two-wheeled welding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the sliding surface vector including new boundizing function and the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system is shown through the Lyapunov method. In addition, a simple way of measuring the errors by potentiometers is introduced. The simulations and experimental results are shown to prove the effectiveness of the proposed controller.