• Title/Summary/Keyword: sliding structure

Search Result 648, Processing Time 0.023 seconds

Watertightness Property Evaluation of Rain-Block System (개폐식 대공간 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Kim, Yun-Ho;Baek, Ki-Youl;Kim, Jong-Su;Lee, Sun-Gyu;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.13-16
    • /
    • 2010
  • This study is an Investigation on the Watertightness Properties of Rain-Block System on the Sliding-Roof Joint of Large-Span Membrane Structures. In this experimental, we test the watertightness performance of joint part of sliding door in roof of large span membrane structure(for pilot project) under environment of rain and wind. A shape of rain water blocking systems of joint part in sliding door verifies the defects and effects of water leakage prevention in precipitation with the wind conditions. For obtaining watertightness of large span membrane structures, it is necessary quality of joints and performance, and quality of membrane material of a retractable roof as well as a closed roof. Also, for obtaining quality in joints, it is essential to make a watertightness guideline for design of large-span membrane.

  • PDF

A Study on the Position Control of BLDC Motor with a New Sliding Surface (새로운 슬라이딩 면을 가지는 BLDC 전동기의 위치 제어에 관한 연구)

  • Lee, Dae-Sik;Park, Su-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.719-727
    • /
    • 1999
  • A robust position control method of the BLDC motor using a new sliding mode control strategy is presented. The main property of variable structure system(VSS) is that the system response is robust and insensitive to parameter variations and external disturbances in the sliding mode. When using the conventional VSS, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. Furthermore, the speed of response is relatively slow because the swithching surface is a linear function. In order to overcome these problems, VSS with nonlinear sliding surface eliminating reaching phase is proposed. The validity of the proposed scheme is shown by results of simulations of simulations and experiments for the BLDC motor with variable load.

  • PDF

On parameter identification algorithm using VSS theory (가변구조이론에 의한 파라미터 identification 알고리즘)

  • 심귀보;한동균;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.927-930
    • /
    • 1992
  • VSS identification approach is based on following concept, i.e. while in sliding motion, the switching of control inputs refects system uncertainites. Therefore, if there exist some operations that make the information form the switiching control inputs be achievable, then the unknown parameters can be actually identification mechanisms which can fully make use of the available information. Two different types of VSS identifiers are taken into consideration. The first type uses adjustable model whose structure is similar to that of identified systems. From the viewpoint of contro, this type of VSS identifiers may be regraded as direct identifier vecause the identified system is handled as an open loop. On the other hand, if the identified system is controlable in the sense of VSS(sliding mode can be generated through chosing control inputs), the second type of VSS identifier, the indirect VSS identifier, can be constructed according to the linerized system strucutre while staying in sliding mode. Therefroe it can be applied to some nonlinear systems which are not linear in parametric space by general identification algorithms, whereas linear in parametric space when sliding mode is existed.

  • PDF

A Study on the Tribolayer using Focused Ion Beam (FIB) (FIB를 이용한 트라이보층에 대한 연구)

  • Kim, Hong-Jin
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • Focused Ion Beam (FIB) has been used for site-specific TEM sample preparation and small scale fabrication. Moreover, analysis on the surface microstructure and phase distribution is possible by ion channeling contrast of FIB with high resolution. This paper describes FIB applications and deformed surface structure induced by sliding. The effect of FIB process on the surface damage was explored as well. The sliding experiments were conducted using high purity aluminum and OFHC(Oxygen-Free High Conductivity) copper. The counterpart material was steel. Pin-on-disk, Rotational Barrel Gas Gun and Explosively Driven Friction Tester were used for the sliding experiments in order to investigate the velocity effect on the microstructural change. From the FIB analysis, it is revealed that ion channeling contrast of FIB has better resolution than SEM and the tribolayer is composed of nanocrystalline structures. And the thickness of tribolayer was constant regardless of sliding velocities.

A Study on the Relationship between Oxidation and Sliding Wear Behavior of Ordered Fe-Al Intermetallic Alloys (규칙화된 Fe-Al 계 금속간 화합물의 산화특성과 미끄럼 마모거동과의 관계에 대한 연구)

  • 김용석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.144-148
    • /
    • 1999
  • The relationship between oxidation and sliding wear behavior of Fe-28 at%. Al alloys with B2 ordered structure has been investigated. Sliding wear tests of the alloys have been carried out under various environmental conditions using a pin-on-disk wear tester. The wear rate of the ordered alloys in an oxygen atmoshpere was found to be much lower than in an oxygen atmosphere showed that Fe2O oxides formed on the wearing surface. The oxide layer prevented direct contact of the two mating materials and therefore improved wear resistance of the Fe-Al intermetallic alloy. It was found that the surface Al2O3 oxide layer which provides good oxidation resistance and improved mechanical properties broke down easily and didnot function properly as an oxidation barrier.

  • PDF

A Study on the Position Control of BLDC Motor with New Sliding Surface. (새로운 슬라이딩면을 가지는 BLDC 모터의 위치제어에 관한 연구)

  • Lee, Dae-Sik;Park, Soo-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.80-82
    • /
    • 1997
  • A robust position control system for a BLDC motor using new sliding mode control strategy is presented. Using the new variable structure system, reaching phase problem is eliminated and transient response is largely improved by design of nonlinear sliding surface. The design of the sliding mode position controller is robust in motor parameter, load variations and disturbance. Experiment results show that the proposed approach can achieve accurate position motor tracking in face of large parameter variations and external disturbances, such as a robot arm, etc.

  • PDF

Control of Inverted Pendulum using Adaptive Fuzzy Sliding Mode Control (적응 퍼지 슬라이딩 모드 제어를 이용한 도립진자의 제어)

  • Seo, Sam-Jun;Seo, Ho-Joon;Kim, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2135-2137
    • /
    • 2002
  • In this paper to overcome drawback of FLC an adaptive fuzzy sliding mode controller is proposed. The fuzzy basis function to describe the fuzzy system is introduced. The system parameter in sliding mode are estimated by the indirect adaptive fuzzy control. Adaptive laws for fuzzy parameters and fuzzy rule structure are established so that the whole system is suable in the sense of Lyapunov stability. The computer simulation results for inverted pendulum system show the performance of the proposed fuzzy sliding mode controller.

  • PDF

A Poof of Utkin's Theorem for SI Uncertain Nonlinear Systems (단일입력 불확실 비선형 시스템에 대한 Utkin 정리의 증명)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1612-1619
    • /
    • 2017
  • In this note, a complete proof of Utkin's theorem is presented for SI(single input) uncertain nonlinear systems. The invariance theorem with respect to the two nonlinear transformation methods so called the two diagonalization methods is proved clearly, comparatively, and completely for SI uncertain nonlinear systems. With respect to the sliding surface and control input transformations, the equation of the sliding mode i.e., the sliding surface is invariant, which is proved completely. Through an illustrative example and simulation study, the usefulness of the main results is verified. By means of the two nonlinear transformation methods, the same results can be obtained.

Frequency-shaped Sliding Mode Control of Isolation Table Equipped with Precision devices (정밀기기가 탑재된 방진대의 주파수성형 슬라이딩모드 제어)

  • 김효준;박영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2002
  • This paper presents the design of an active vibration suppression controller for an air-spring type vibration isolation table. Firstly, isolation system model is constructed considering the isolation table, attached equipment and voice-coil actuator. An active control system is designed based on frequency-shaped sliding mode control theory rewarding high frequency uncertainties with respect to attached equipments on the isolation table. Finally. the performance of the active isolation system is evaluated by simulation under some disturbance conditions which are transmitted from base structure of the isolation system.

Proofs of Utkin's Theorem for MIMO Uncertain Integral Linear Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2014
  • The uncertain integral linear system is the integral-augmented uncertain system to improve the resultant performance. In this note, for a MI(Multi Input) uncertain integral linear case, Utkin's theorem is proved clearly and comparatively. With respect to the two transformations(diagonalizations), the equation of the sliding mode is invariant. By using the results of this note, in the SMC for MIMO uncertain integral linear systems, the existence condition of the sliding mode on the predetermined sliding surface is easily proved. The effectiveness of the main results is verified through an illustrative example and simulation study.