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Abstract - In this note, a complete proof of Utkin's theorem is presented for SI(single input) uncertain nonlinear systems. 

The invariance theorem with respect to the two nonlinear transformation methods so called the two diagonalization methods 

is proved clearly, comparatively, and completely for SI uncertain nonlinear systems. With respect to the sliding surface and 

control input transformations, the equation of the sliding mode i.e., the sliding surface is invariant, which is proved 

completely. Through an illustrative example and simulation study, the usefulness of the main results is verified. By means of 

the two nonlinear transformation methods, the same results can be obtained.
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1. Introduction

  The variable structure system(VSS) with the sliding mode 

control(SMC) can provide the effective means to the control 

of uncertain nonlinear dynamical systems under parameter 

variations and external disturbances[1-4]. One of its 

essential advantages is the robustness of the controlled 

system to matched parameter uncertainties and external 

disturbances in the sliding mode on the predetermined 

sliding surface, s=0 [5-7]. To take the advantages of the 

sliding mode on the predetermined sliding surface, the 

precise existence condition of the sliding mode, ⋅  for 

the SI case as well as ⋅
     for the 

MI(Multi Input) case should be satisfied[8]. Therefore the 

precise existence condition of the sliding mode must be 

proved completely for linear plants moreover for nonlinear 

plants. Utkin in [4] presented the two nonlinear 

methodologies without the complete proofs in order to prove 

the precise existence condition of the sliding mode on the 

pre-selected sliding surface. It is so called the invariance 

theorem, that is the equation of the sliding mode is invariant 

with respect to the two nonlinear transformations. Those are 

the control input transformation and sliding surface 

transformation, so called the two diagonalization methods. 

The essential feature of both nonlinear transformation 

methods is the conversion of a multi-input design problem 

into m single-input design problems[4]. Those were only 

reviewed in [5]. DeCarlo, Zak, and Matthews tried to prove 

Utkin's invariance theorem. But, the proof also is incomplete, 

and only the same as those of Utkin. In [9], Su, Drakunov, 

and Ozguner mentioned the sliding surface transformation, 

which would diagonalize the control coefficient matrix to the 

dynamics for the sliding surface  . But they did not 

completely prove the precise existence condition of the 

sliding mode on the predetermined sliding surface. Even for 

a SI linear case, that proof is hardly reported. For MI linear 

plants, instead of proving the precise existence condition of 

the sliding mode, some design methods were studied, those 

are, including the two diagonalization methods[4,5], the 

hierarchical control methodology[4, 6], simplex algorithm[14], 

Lyapunov approach[1, 9, 18, 22], and so on. Until now in 

MIMO(Multi input multi output) VSSs, it is difficult to prove 

the precise existence condition of the sliding mode on the 

predetermined sliding surface theoretically, but in [9, 18, 22], 

only the result that the derivative of the Lyapunov candidate 

function is negative, i,e.    is obtained when the 

Lyapunov candidate function is taken as  . In SI 

systems, both the VSS existence condition of the sliding 

mode and the Lyapunov stability are the same when the 

Lyapunov candidate function is taken as  . 

However, the VSS existence condition of the sliding mode in 

multi input systems is the more strict condition than the 

Lyapunov stability because if the VSS existence condition of 

the sliding mode is satisfied, then the Lyapunov stability is 

did but the reverse argument does not hold generally. In 
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[23], for MI uncertain linear plants, the proof of Utkin’s 

theorem is given comparatively, the precise existence 

condition of the sliding mode is proved completely, and the 

complete formulation of the multivariable VSS is possible 

from the design of the sliding surface to the proof of the 

precise existence of the sliding mode and the proof of the 

stability of the closed loop system.

  Until now, for SI uncertain nonlinear systems, a rigorous 

proof of Utkin's theorem is hardly reported, while the proof 

of Utkin invariant theorem for MI linear plants is given. For 

SI uncertain nonlinear plants, the proof of Utkin theorem is 

necessary.

  In this note, a complete proof of Utkin's theorem is 

presented for SI uncertain nonlinear plants. The invariance 

theorem with respect to the two nonlinear transformation 

methods so called the two diagonalization methods is proved 

clearly and comparatively. The complete formulation from 

the formulation of the objective plants to the proof of the 

existence condition of the sliding mode and the stability of 

the closed loop system is possible. If the control input 

matrix    in the model of nonlinear plants is 

constant(not function of  or ) i.e.    , then 

both transformation (diagonalization) methods of Utkin’s 

theorem can be used to, otherwise, only the control input 

transformation can be applied to the proof of the existence 

condition of the sliding mode on the predetermined sliding 

surface in the nonlinear VSS. A design example and 

simulation study shows the usefulness of the main results. 

2. Main Results of Proof of Utkin's Theorem

The invariant theorem of Utkin is as follows[4, 5]:

Theorem 1: The equation of the sliding mode is invariant 

with respect to the two nonlinear transformations, i.e. the 

control input transformation and sliding surface 

transformation:

  ⋅

 ⋅
  (1)

where    and    are the nonlinear 

transformation matrices for det≠ and det≠ .

To prove this theorem, consider a SI affine uncertain 

nonlinear system

 ′     (2)

where ∈  is the state vector,   is its initial state, 

∈  is the control input,  ∈  and  ∈  

≥  ,  ≠ for ∈  and for  ≥  are of 

suitable dimensions, and ′    implies bounded matched 

external disturbances. 

Assumption

A1:  is continuously differentiable.

Then, the uncertain nonlinear system (1) can be 

represented in the more affine nonlinear system of the 

modified state dependent coefficient form

 ∆ ∆

 ∆ ′ 
 

  (3)

where   and   is each nominal value such that

  ∆ ∆  (4a)

  ∆   (4b)

respectively, ∆   and ∆  are mismatched 

uncertainties, ∆   is matched uncertainties, ′    
is matched external disturbance, and    is the totally 

mismatched lumped uncertainties, respectively.

Assumption:

A2: The pair      is controllable for 

 ∈  and for  ≥ 

A3: The lumped uncertainties    is bounded 

The conventional typical sliding surface is a linear 

combination of the full state variable as

  ⋅ 
  



   (5)

where   is a non zero element constant coefficient column 

vector for the sliding surface.

A4:     and     have the full rank and 

invertible

A5: ∆     


∆ and ∆ ≤   .

The VSS control input is as follows:

 ⋅⋅⋅  (6)
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where   is a static gain,  is a state dependent 

switching gain, and  is a switching gain.

2.1 Control input transformation[4, 5]

   

     



   



   (7)

where the nonlinear control input transformation matrix is 

selected as    
 for SI uncertain nonlinear 

plants. In [4] and [5], the proof for the nonlinear control 

input transformation is not complete. The real dynamics of 

 , i.e. the time derivative of   is as follows:

  

   ∆  

′
   ∆ 



′
   ∆   

′
    

  ∆ ′
 

  (8)

If   is a function of the state vector  i.e.  , 

then the formulation of (8) can not be obtained easily. By 

letting the static gain 

    (9)

which is proposed in this paper. Then the real dynamics of 

  becomes

  

 ∆
′ 



(10)

If one takes the switching gains as the design parameters 

∆ 








≥min ∆
max∆ ∆ 

 

≤min ∆
min∆ ∆ 

 

 

     (11)











≥min∆
max∆ ′

 

≤min ∆
min∆ ′

 

 (12)

then one can obtain the following equation

⋅  (13)

The existence condition of the sliding mode is proved for 

SI uncertain nonlinear systems. The equation of the sliding 

mode, i.e. the sliding surface is invariant to the nonlinear 

control input transformation. One takes the Lyapunov 

candidate function as     , then the time 

derivative of the Lyapunov candidate function is negative 

from (13), that is   ⋅  . Therefore the asymptotic 

stability of the closed loop system is satisfied in the sense 

of Lyapunov. 

2.2 Sliding surface transformation[4, 5, 9]

    

⋅       


 (14)

The sliding surface transformation matrix is selected as 

    


. In [5], the proof is not 

sufficient. Now, the VSS control input for the new sliding 

surface is taken as follows:

 ⋅⋅⋅    (15)

The real dynamics of the sliding surface, i.e. the time 

derivative of  becomes




  

   






  

    

 

(16)

Since   is a function of the state vector  , the 

further formulation of (16) is difficult. In [3] and [4], the 

proofs of the sliding surface transformation are the same 

and stopped here. Only an example to show the proof is 

given. However if   is constant, i.e.  

    

 , then it is possible to go the further 

steps of the formulation with an assumption

A6:   

 ∆ ∆′  and ∆′ ≤   .

Even though the objective plant is nonlinear, it is natural 

and convenient that the modelling of   is to be 
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constant and the maximum bound of the parameter 

variation is found and used in most of the VSS controller 

design for nonlinear plants. Therefore the first term of the 

right hand side of (16) equation is zero, the real dynamics 

of the sliding surface leads to

  
 


  
 
  

  
 
∆ 

  
 
 

  
 
′

    
 
  

  
 
∆ 

 ′   
 
′

  
 
  

  
 
∆ 

′ 

  
 
′

   (17)

By letting the static gain as

    

    (18)

which is proposed in this paper. Then the real dynamics of 

 becomes

  
   ′

  ′
 

 ∆  
 ′

 ′

 (19)

In [9], without uncertainty and disturbance, it is 

mentioned that the sliding surface transformation would 

diagonalize the control coefficient matrix to the dynamics 

for   and the    is proved when     . 

In [23], for MI linear plants, the proof of the sliding 

surface transformation is given.

If one takes the switching gains as follows:

∆ 









≥min∆′
max  

  ∆ ∆′  
   

  

≤min∆′
min  

  ∆ ∆′  
   

  

  

   (20)











≥min∆′
max 

 ∆ ′
 

≤min ∆′
min 

 ∆ ′
 

 

(21)

then

⋅  .  (22)

The existence condition of the sliding mode is proved. 

One takes the Lyapunov candidate function as 

    , then the time derivative of the 

Lyapunov candidate function is negative from (22), that is 

  ⋅  . Therefore the asymptotic stability of 

the closed loop system is satisfied in the sense of 

Lyapunov. If the sliding mode equation   , then    

since ≠  and invertible. The inverse augment also 

holds, therefore the two sliding surfaces both are equal i.e. 

     , which completes the proof of Theorem 1.

The sliding mode equation i.e. the sliding surface    

is the same as that of   . To compare the control 

inputs,  and  , the form is the same but the gains of 

 are multiplied by    . To compare the control 

input,  and  , the form and the gain is the same. The 

two transformation methods equivalently diagonalize the 

system, so those are called the two diagonalization methods.

3. Design Examples and Simulation Studies

Consider a second order affine uncertain nonlinear system 

with mismatched uncertainties and matched disturbance

sinsin  

sin sin
sinsinsin

  (23)

Since (23) satisfy the Assumption A1, (23) is represented 

in the state dependent coefficient form as

 















sin  

 sin









 

sinsin









 sin
sin








 
sin





 (24)

where the nominal parameter   and   and 

mismatched uncertainties ∆  and ∆ , and 

matched uncertainty ∆  are

 


 
 



 ,  








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그림 1 제어입력 변환에 의한 두 출력 응답

Fig. 1 Two output responses,  and  by control input 

transformation  with 

그림 2 실제 상 궤적(i)과 이상 슬라이딩 궤적(ii)

Fig. 2 Real phase trajectory(i) and ideal sliding trajectory(ii)

그림 3 슬라이딩 면 

Fig. 3 Sliding surface 

∆ 



sin  

 sin 



 ,  

∆ 



 

sinsin





∆ 



sin
sin




  (25)

′   

 
sin





The coefficient of the linear sliding surface is determined as

      (26)

3.1 Control input transformation

  


   
   







 

 

   (27)

Then, the real dynamics of  , i.e. the time derivative of 

  is as follows:

  

 ∆
′ 

  (28)

where

∆  ∆      



sin  
sin




 

 sin sin  ≤ 

 (29)

By letting the constant gain

      


 
 





   

  (30)

If one takes the switching gain as design parameters 

    i f   

 i f  
    

    i f   

 i f  
 

  


 i f   




 i f   
 (31)

then one can obtain the following equation

⋅  (32)

The existence condition of the sliding mode is proved 

precisely. The equation of the sliding mode, i.e the sliding 

surface is invariant to the control input transformation. 

 The simulation is carried out under 0.1[msec] sampling 

time and with     initial state. Fig. 1 shows 

the two output responses,  and  by  with  . The 
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그림 5 슬라이딩 면 변환에 의한 두 출력 응답

Fig. 5 Two output responses,  and  by sliding surface 

transformation  with 

그림 6 실제 상 궤적(i)과 이상 슬라이딩 궤적(ii)

Fig. 6 Real phase trajectory(i) and ideal sliding trajectory(ii)

그림 4 제어입력

Fig. 4 Control input 

real phase trajectory(i) and ideal sliding trajectory(ii) are 

depicted in Fig. 2. The sliding surface   is shown in 

Fig. 3. The control input   is depicted in Fig. 4.

3.2 Sliding surface transformation

  
⋅

   
 

 (33)

Now, the VSS control input is taken as follows:

 ⋅⋅⋅    (34)

The real dynamics of the sliding surface, i.e. the time 

derivative of  becomes

  
  ′

′  
 ∆

 
 ′ ′ 

  (35)

where

∆′    

 ∆

    



sin
sin






sinsin ≤   

 (36)

By letting gain

    

 

       

  (37)

If one takes the switching gains as follows:

    i f  

 i f  
  

    i f   

 i f  
 

  


 i f  




 i f  
 (38)

then

⋅    (39)

if   , then    . The inverse augment also holds. The 

switching gains in (38) can be obtained also from (31) by 

multiplying   


 . Fig. 5 shows the two output 

responses,  and  by  with  . Fig. 5 is almost 

identical to Fig. 1 because the sliding surfaces      

are equal and the continuous gains and discontinuous gains 

of the two controls,  and  , both are equal. The real 

phase trajectory(i) and ideal sliding trajectory(ii) are 

depicted in Fig. 6. In Fig. 7, the sliding surface   

which is a   


 multiplied value of   in 

Fig. 3 is shown. The control input   is depicted in Fig. 
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그림 7 슬라이딩 면 

Fig. 7 Sliding surface 

그림 8 제어입력

Fig. 8 Control input 

8 which is the same as   in Fig. 4.

4. Conclusions

In this note, the invariant theorem of Utkin is rigorously, 

precisely, and completely proved for SI uncertain nonlinear 

systems. During the proof, the precise existence condition of 

the sliding mode on the pre-selected sliding surface is 

completely proved for SI uncertain nonlinear plants. The 

invariance theorem of the two diagonal(transformation) 

methods i.e., the control input transformation and sliding 

surface transformation is proved clearly, comparatively, and 

completely. Therefore, the equation of the sliding mode, i.e., 

the sliding surface is invariant with respect to the two 

diagonalization methods. These two methods diagonalize the 

input system of the real dynamics of the sliding surface   

or  so that the existence condition of the sliding mode 

on the predetermined sliding surface is easily proved. 

During the proof of Utkin's theorem, the conventional linear 

sliding surface is applied to and the gain design rules for 

the two control inputs are proposed. Through an illustrative 

example and simulation study, the effectiveness of the 

proposed main results is verified. The same results in the 

outputs by the two diagonalization methods are obtained. 

The equation of the sliding mode, i.e., the sliding surface is 

invariant with respect to the two diagonalization methods. If 

the control input matrix    in the model of nonlinear 

plants is constant(not function of  or ) i.e.   , 

then both transformation(diagonalization) methods of Utkin’s 

theorem can be used, otherwise, only the control input 

transformation can be applied to the proof of the existence 

condition of the sliding mode on the predetermined sliding 

surface in the nonlinear VSS. It is possible to formulate 

completely the equation of the VSS controller design for SI 

uncertain nonlinear systems from the formulation of the 

objective plants to the complete proof of the existence 

condition of the sliding mode and the proof of the 

asymptotic stability of the closed loop system
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