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Abstract - In this note, a complete proof of Utkin's theorem is presented for Sl(single input) uncertain nonlinear systems.
The invariance theorem with respect to the two nonlinear transformation methods so called the two diagonalization methods
is proved clearly, comparatively, and completely for SI uncertain nonlinear systems. With respect to the sliding surface and
control input transformations, the equation of the sliding mode ie. the sliding surface is invariant, which is proved
completely. Through an illustrative example and simulation study, the usefulness of the main results is verified. By means of
the two nonlinear transformation methods, the same results can be obtained.
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1. Introduction

The variable structure system(VSS) with the sliding mode
control(SMC) can provide the effective means to the control
of uncertain nonlinear dynamical systems under parameter
variations and external disturbances[1-4]. One of its
essential advantages is the robustness of the controlled
system to matched parameter uncertainties and external
disturbances in the sliding mode on the predetermined
sliding surface, s=0 [56-7]. To take the advantages of the
sliding mode on the predetermined sliding surface, the
precise existence condition of the sliding mode, s - s< 0 for
the SI case as well as s; - 97< 0, :=1,2,..m for the
MI(Multi Input) case should be satisfied[8]. Therefore the
precise existence condition of the sliding mode must be
proved completely for linear plants moreover for nonlinear
plants. Utkin in [4]
methodologies without the complete proofs in order to prove

presented the two nonlinear
the precise existence condition of the sliding mode on the
pre-selected sliding surface. It is so called the invariance
theorem, that is the equation of the sliding mode is invariant
with respect to the two nonlinear transformations. Those are
the control input transformation and sliding surface
transformation, so called the two diagonalization methods.
The essential feature of both nonlinear transformation
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methods is the conversion of a multi-input design problem
into m single-input design problems[4]. Those were only
reviewed in [5]. DeCarlo, Zak, and Matthews tried to prove
Utkin's invariance theorem. But, the proof also is incomplete,
and only the same as those of Utkin. In [9], Su, Drakunov,
and Ozguner mentioned the sliding surface transformation,
which would diagonalize the control coefficient matrix to the
dynamics for the sliding surface s. But they did not
completely prove the precise existence condition of the
sliding mode on the predetermined sliding surface. Even for
a Sl linear case, that proof is hardly reported. For MI linear
plants, instead of proving the precise existence condition of
the sliding mode, some design methods were studied, those
are, including the two diagonalization methods[4,5], the
hierarchical control methodology[4, 6], simplex algorithm[14],
Lyapunov approach[1, 9, 18, 22], and so on. Until now in
MIMOMulti input multi output) VSSs, it is difficult to prove
the precise existence condition of the sliding mode on the
predetermined sliding surface theoretically, but in [9, 18, 22],
only the result that the derivative of the Lyapunov candidate

function is negative, ie. V<0 is obtained when the
Lyapunov candidate function is taken as V=1/2s%s. In SI
systems, both the VSS existence condition of the sliding
mode and the Lyapunov stability are the same when the
Vv=1/ 2575,
However, the VSS existence condition of the sliding mode in

Lyapunov candidate function is taken as

multi input systems is the more strict condition than the
Lyapunov stability because if the VSS existence condition of
the sliding mode is satisfied, then the Lyapunov stability is
did but the reverse argument does not hold generally. In
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[23], for MI uncertain linear plants, the proof of Utkin's
theorem 1is given comparatively, the precise existence
condition of the sliding mode is proved completely, and the
complete formulation of the multivariable VSS is possible
from the design of the sliding surface to the proof of the
precise existence of the sliding mode and the proof of the
stability of the closed loop system.

Until now, for SI uncertain nonlinear systems, a rigorous
proof of Utkin's theorem is hardly reported, while the proof
of Utkin invariant theorem for MI linear plants is given. For
SI uncertain nonlinear plants, the proof of Utkin theorem is
necessary.

In this note, a complete proof of Utkin's theorem is
presented for SI uncertain nonlinear plants. The invariance
theorem with respect to the two nonlinear transformation
methods so called the two diagonalization methods is proved
clearly and comparatively. The complete formulation from
the formulation of the objective plants to the proof of the
existence condition of the sliding mode and the stability of
the closed loop system is possible. If the control input
matrix go(z,¢) in the model of nonlinear plants is

constant(not function of x or t) ie. g,(z,t) =B, then

both transformation (diagonalization) methods of Utkin's
theorem can be used to, otherwise, only the control input
transformation can be applied to the proof of the existence
condition of the sliding mode on the predetermined sliding
surface in the nonlinear VSS. A design example and

simulation study shows the usefulness of the main results.

2. Main Results of Proof of Utkin's Theorem

The invariant theorem of Utkin is as follows[4, 5]:

Theorem 1: The equation of the sliding mode is invariant
with respect to the two nonlinear transformations, ie. the

control  input  transformation  and sliding  surface
transformation:
w*(z) = H,(z,t) - ulz) o)
s*(z) = H(z,t) - s(z)
where  H,(x,t) and H/(z,t) are the nonlinear

transformation matrices for detd, # 0 and detH, # 0.

To prove this theorem, consider a SI affine uncertain
nonlinear system

z=f(z,t) +g(z,t)u+d (2,t) z(0) (2)
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where € R" is the state vector, z(0) is its initial state,
wER' is the control input, f(z,t)EC* and g¢(x, t)ECY,
k=1, gz, t) 20, forallz ER™ and for allt >0 are of
suitable dimensions, and d' (z, ¢) implies bounded matched
external disturbances.

Assumption
Al:f(z,t) is continuously differentiable.

Then, the wuncertain nonlinear system (1) can be
represented in the more affine nonlinear system of the
modified state dependent coefficient form

o= [foz,t) + Af (z,0) |z + Af,y(a,t) 3)
+ [go(x7t) +Ag(a,t) } utd (z,t)
=f0(1',t):c+go(ac,t)u+d(ac,t)

where f,(x,t) and g,(z,t) is each nominal value such that

flzt) =
g(z.t) = [gy(z,t) + Ag(a,t)] (4b)

[fo(@,t) +Af (@) |z + Af, (x,t) (4a)

respectively, Af,(z,t) and Ag(x,t) are mismatched
uncertainties, Af,(z,t) is matched uncertainties, d (z,t)

is matched external disturbance, and d(z, t) is the totally
mismatched lumped uncertainties, respectively.

Assumption:
A2: The vpair (f,(z,t), go(z,t)) is

allr ER" and for allt >0

controllable  for

A3: The lumped uncertainties d(z, t) is bounded

The conventional typical sliding surface is a linear
combination of the full state variable as

n

s=C7. x=chxj c, =1 (5)
i=1

where C' is a non zero element constant coefficient column

vector for the sliding surface.

A4 C'g(x,t) and C%gy(z,t) have the full rank and

invertible

A5:CTAg(x, 1) [CTgy(a, t)] ' = AT and [ATl << 1.

The VSS control input is as follows:

u, =—K(z) - 2— AK - x— G - sign(s) 6
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where K(x) is a static gain, AK is a state dependent
switching gain, and G is a switching gain.

2.1 Control input transformation[4, 5]

u*= [CTgo(x,t)rlul, H, = [CTgU(x,t)rl (7

where the nonlinear control input transformation matrix is
selected as H, =(C”g,(x,t))"" for SI uncertain nonlinear

plants. In [4] and [5], the proof for the nonlinear control
input transformation is not complete. The real dynamics of
s, ie. the time derivative of s is as follows:

s=C'x
= C™(f, (z,t) + Af, (1) + CTAS, (2,t) + CT(g, (x,1)
+ Ag(z,t))ur+ CTd (z,t)
= C7(f, (x,t) + Af, (w.t)z+ CTAS, (w,t) + (I+ ADu,

+C7d (z,t)
= C™(f, (z,t)+ Af (a,t))x+ CTAf, (2,t) + I+ AD
(— K(z)z— AKz — Gsign(s)) + CTd (z,t) 8)

= CTfO (@,t)x— K(z)z+ CTAfl (2,t)z— AIK(x)x
—(I+ADAKz + CTAfy (z,t)+ C7d (2,t)
— (I+ AI Gsign(s)

If C is a function of the state vector z ie. Clx,t),

then the formulation of (8) can not be obtained easily. By
letting the static gain

K(z) = C"f,(x,t) )

which is proposed in this paper. Then the real dynamics of

s becomes
s= CTAf (z,t)x— AIK(x)z — (I+ AD AKz: (10)
+ CTAfy(z,t) + CTd (1)
— (I+ A Gsign(s)

If one takes the switching gains as the design parameters

max{CTAf, (a,t) — AICTS, (x,t)}]

sign(sx_]) >0

N min{/+ A},
Ak, = . P J .
j mm{C Afl(x,t)fA]C fo(mat)}j '
B min{I+ AT}, sign(sz;) <0
71=12,..,n w
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max{CTAf,(x,t)+ CTd (z,t)}

min {7+ AJ} sign(s) >0

“F1 min{C"AL @)+ O @) 12
< (7 AT sign(s) <0
then one can obtain the following equation
5+58<0 13)

The existence condition of the sliding mode is proved for
SI uncertain nonlinear systems. The equation of the sliding
mode, ie. the sliding surface is invariant to the nonlinear
control input transformation. One takes the Lyapunov
candidate function as V(s) =1/2s%s >0, then the time
derivative of the Lyapunov candidate function is negative
from (13), that is V(s) =5 - s< 0. Therefore the asymptotic
stability of the closed loop system is satisfied in the sense
of Lyapunov.

2.2 Sliding surface transformation[4, 5, 9]
T -1 T -1
s*=[CTg(z. )] "+ s, H(x. )= [Clgy(z. )] (14)

The sliding surface transformation matrix is selected as
H(x.t)= [CTgO(zyt)rl. In [5], the proof is not

sufficient. Now, the VSS control input for the new sliding
surface is taken as follows:

uy =—K(z) - 2 —AK+ x— G - sign(s*) (15)

The real dynamics of the sliding surface, ie. the time
derivative of s* becomes

s*= {C'Tgo(x7t)]715+ [CTgO(z,t)]ilé (16)

g —1- -1 :

ZE{CTgO(a@,t)] xC’Ter[CTgO(a:,t)] Cc'x
Since g,(x,t) is a function of the state vector =, the
further formulation of (16) is difficult. In [3] and [4], the
proofs of the sliding surface transformation are the same
and stopped here. Only an example to show the proof is
given. However if g,(z,t) is constant, ie. g,(z,t) =5,

(H (z,t) = {CTBO}il), then it is possible to go the further

steps of the formulation with an assumption
A6:[C7B)| ' CTAg(xt) = AT and AT <y <1,

Even though the objective plant is nonlinear, it is natural
and convenient that the modelling of g,(2,t) is to be



constant and the maximum bound of the parameter
variation is found and used in most of the VSS controller
design for nonlinear plants. Therefore the first term of the
right hand side of (16) equation is zero, the real dynamics
of the sliding surface leads to

s=[cTB] "z
= [C7B] 7 CT(f, (1) + Af, (1)
+oTg)] AT AL, (x,t)
+[CTB)| (B + Agla,t))u,
+[Cc7B)| T Cd (x,t)
=[c"B)| " O, (x,6) + Af, (a.1))x an
+[cTB)| T T AL, (x,t)
+(I+ Ay + [CTB) O (a.t)
— [CTBOTICT(fU (z,t) +Af, (@,t))x
+[cTg| ot Af, (x,t)
+(I+ Al (— K(z)z — AKz — Gsign(s"))
+[CTB)| " CTd (xt)

By letting the static gain as
Klz)=[CTB,| ' CTfy (1) (18)

which is proposed in this paper. Then the real dynamics of
s* becomes

s*= [(CTB))" ' CTAf, (x,t) — Al K(z))z (19)
—(I+AI') AKx
+(CTB) ' CTAL, (2,t)+(CTB) ' OTd (z,t)
— (I+ A7) Gsign(s*)

In [9], without uncertainty and disturbance, it is
mentioned that the sliding surface transformation would
diagonalize the control coefficient matrix to the dynamics
for s and the z) <0 is proved when V(z)=axz7Pr> 0.
In [23], for MI linear plants, the proof of the sliding
surface transformation is given.

If one takes the switching gains as follows:

max{(C7B,)" CTAf, (et) = AL(CB) ™ Oy (e0)},

sign(s*;lrj) >0

Ak = B min{/+ A7},
7| min{(07B) N OTAL ) = ALCTB) Oy @)y,
= min{/+ A]’}] sign (s 171) <0
71=12,...,n 20)
max{(CTBo)ilcT(Afg (%t)+d'(x,t))}
- i sign(s*) >0
G= min{/+A7l}
min{(CTBo)flcT(Afz (2.,t) +d/(17,t))}
- ; sign(s*) <0
min{/+ A7}

21
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then
s* - $¥<0. (22)

The existence condition of the sliding mode is proved.
One takes the Lyapunov
V(s*) =1/2s*Ts*>0, then the time derivative of the
Lyapunov candidate function is negative from (22), that is
V(s*):s* . §%< 0. Therefore the asymptotic stability of
the closed loop system is satisfied in the sense of

candidate  function as

Lyapunov. If the sliding mode equation s*=0, then s=0
since CB;# 0 and invertible. The inverse augment also
holds, therefore the two sliding surfaces both are equal i.e.
s =0=s*, which completes the proof of Theorem 1.

The sliding mode equation ie. the sliding surface s=0
is the same as that of s*=0. To compare the control
inputs, u; and wu,, the form is the same but the gains of
u, are multiplied by [CTgU(z,t)]‘ To compare the control
input, u* and w,, the form and the gain is the same. The

two transformation methods equivalently diagonalize the
system, so those are called the two diagonalization methods.

3. Design Examples and Simulation Studies

Consider a second order affine uncertain nonlinear system
with mismatched uncertainties and matched disturbance

J."l:_ 7 +3;15in2 (xl) +x,+0.02sin (Ltl Ju

2,=0.7sin (z, ) + 2, —0.8sin (z,) +0.2(a? +22) (23)
+,5in%(z,) + (24 0.3sin (2¢))u + 2sin (5t)

Since (23) satisfy the Assumption Al, (23) is represented
in the state dependent coefficient form as

T —1+sin®(z 1
M= () N ©24)
T, 0 1+sin*(z,)

0

*0.7sin (z,) —0.8sin (a,) +0.2(2% +22)
[ 0.02sin(z,) ]u
2+40.3sin(2t)

o)
2sin (5t)

where the nominal parameter fﬂ(x,t) and go(a;t) and

mismatched uncertainties Af,(x,t) and Ag(z,t), and

matched uncertainty Af,(z,t) are

e R
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sin®(z,) 0
0 sin®(z,)]|’

Afl(x.,t) = [

0
Afylait) = [0.7Sin(xl) —0.8sin(z,) +0.2(2 +22)

_ [0.02sin(z,)
Aglat) = [ 0.3sin (2t) ] @
4 0
d (x,t) = [25in(5t)]

The coefficient of the linear sliding surface is determined as
c’=[10 1] (26)

3.1 Control input transformation

w*=(C"g,(x.t)) uy, @27
H,=(C"gy(2,t))" " =10 1][2}:2”
=21~ K(z)z— AKz — Gsign(s)]

Then, the real dynamics of s, i.e. the time derivative of
s is as follows:

s= CTAf, (z,t)x— AIK(z )z — (I+ AD AKz: (28)
+ CTAf2 (z,t)+ CTd (x,t) — (I+ AD) Gsign(s)

where
0.02sin ()]
A= CTAG(zt T (1)) — 1 1
I=C g(z,f)[C gU(a,t)} [10 H[O.Bsin(%) 2 29)
=0.1sin(z,)+0.15sin(2t) < 0.25 <1
By letting the constant gain
T —-11
K(z) = O7f,(.t) = [10 1}[ ] 1] (30)

=[-10 11]
If one takes the switching gain as design parameters

16.7 ifsz; >0
Ak =1_ o
16.7 ifsz; <0
184 ifsz, >0
Ak, = .
—18.4 ifsz, <0

47+1.27(at+23) ifs >0
G= Lo 31
—4.7-127(z5+73) ifs <0
then one can obtain the following equation
s+8<0 (32)
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The existence condition of the sliding mode is proved
precisely. The equation of the sliding mode, ie the sliding
surface is invariant to the control input transformation.

The simulation is carried out under 0.1[msec] sampling
time and with z(0) =[10 2]7 initial state. Fig. 1 shows
the two output responses, z; and x, by w* with s. The
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real phase trajectory(i) and ideal sliding trajectory(ii) are
depicted in Fig. 2. The sliding surface s(¢) is shown in

Fig. 3. The control input «"(¢) is depicted in Fig. 4.

3.2 Sliding surface transformation

s*= (CTBOV1 - s, (33)
H(z,t)=(C"B) ' =27"

Now, the VSS control input is taken as follows:

uy =—K(zx) - 2 —AK- 2— G - sign(s*) (34)

The real dynamics of the sliding surface, ie. the time
derivative of s* becomes

s*= [(CTB,) ' CTAf, (x,t) — AL K(2)]a (35)
—(I+ A1) AKz+(C'By) ' CTAf,(2,t)
+(C'B,)) 'C"d (x.t) — (I+ Al ) Gsign(s*)

where
Al =[cTB)] 'CTAg(z.t) (36)
I 0.02sin (z,)
=27"[10 1}[O.Zisin(Qt)

=0.1sin(z,) +0.15sin(2t) < 0.25 < 1

By letting gain

K(z)=[CTB)) ' CTfy(at) (37)
=272[-10 11]=[-5.0 5.5]

If one takes the switching gains as follows:

Ak 8.35 ifs*z; >0
17 |=835 ifs*r, <0
chelelsd Sotd o[ ME AlAHol thet Utkin F2le] Y
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Ak — 9.2 ifs*z, >0
27 =92 ifs*r, <0

2.3540.635 (22 +22) ifs >0
= 5 o\ g (38)
—2.35—0.635(2% +123) ifs <0
then
§% - 5%<0 39)

if s*=0, then s=0. The inverse augment also holds. The
switching gains in (38) can be obtained also from (31) by
multiplying [C7B,] "' =271, Fig. 5 shows the two output
responses, z; and x, by wu, with s* Fig. 5 is almost
identical to Fig. 1 because the sliding surfaces s=0=s*
are equal and the continuous gains and discontinuous gains
of the two controls, u* and w,, both are equal. The real
phase trajectory(i and ideal sliding trajectory(i) are
depicted in Fig. 6. In Fig. 7, the sliding surface s (¢)
which is a {CTB()}71:271 multiplied value of s(¢) in
Fig. 3 is shown. The control input u,(¢) is depicted in Fig.
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8 which is the same as u(¢) in Fig. 4.

4. Conclusions

In this note, the invariant theorem of Utkin is rigorously,
precisely, and completely proved for SI uncertain nonlinear
systems. During the proof, the precise existence condition of
the sliding mode on the pre-selected sliding surface is
completely proved for SI uncertain nonlinear plants. The
invariance theorem of the two diagonal(transformation)
methods ie. the control input transformation and sliding
surface transformation is proved clearly, comparatively, and
completely. Therefore, the equation of the sliding mode, i.e.,
the sliding surface is invariant with respect to the two
diagonalization methods. These two methods diagonalize the
input system of the real dynamics of the sliding surface s
or s* so that the existence condition of the sliding mode
on the predetermined sliding surface is easily proved.
During the proof of Utkin's theorem, the conventional linear
sliding surface is applied to and the gain design rules for
the two control inputs are proposed. Through an illustrative
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example and simulation study, the effectiveness of the
proposed main results is verified. The same results in the
outputs by the two diagonalization methods are obtained.
The equation of the sliding mode, ie., the sliding surface is
invariant with respect to the two diagonalization methods. If
the control input matrix g,(x,¢) in the model of nonlinear
plants is constant(not function of z or t) ie. g (=, t) =B,
then both transformation(diagonalization) methods of Utkin's
theorem can be wused, otherwise, only the control input
transformation can be applied to the proof of the existence
condition of the sliding mode on the predetermined sliding
surface in the nonlinear VSS. It is possible to formulate
completely the equation of the VSS controller design for SI
uncertain nonlinear systems from the formulation of the
objective plants to the complete proof of the existence
condition of the sliding mode and the proof of the
asymptotic stability of the closed loop system
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