• Title/Summary/Keyword: sliding mode controller

Search Result 933, Processing Time 0.035 seconds

Optimal Sliding Mode Control of Anti-Lock Braking System

  • Ebrahimirad, H.;Yazdanpanah, M. J.;Kazemi, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1608-1611
    • /
    • 2004
  • Anti-lock brake systems (ABS) are being increasingly used in a wide range of applications due to safety. This paper deals with a high performance optimal sliding mode controller for slip-ratio control in the ABS. In this approach a sliding surface square is considered as an appropriate cost function. The optimum brake torque as a system input is determined by minimizing the cost function and used in the controller. Simulation results reveal the effectiveness of the proposed sliding mode controller.

  • PDF

Robust Repetitive Control for a Class of Nonlinear Systems (비선형 시스템에 대한 강인 반복 제어기)

  • 서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper introduces a robust sliding mode repetitive control method for a class of nonlinear system. The sliding mode controller stabilizes the overall system and makes the tracking error converge to some residual set. Also, tile repetitive learning controller makes the tracking error converge to zero. Unlike other methods, the proposed sliding mode controller reduces the chattering effects in the steady state without using high-order sliding manifold approach.

Adaptive Sliding Mode Control of Nonlinear Systems Using Neural Network and Disturbance Estimation Technique (신경망과 외란 추정 기법을 이용한 비선형 시스템의 적응 슬라이딩 모드 제어)

  • Lee, Jae-Young;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1759-1760
    • /
    • 2008
  • This paper proposes a neural network(NN)-based adaptive sliding mode controller for discrete-time nonlinear systems. By using disturbance estimation technique, a sliding mode controller is designed, which forces the sliding variable to be zero. Then, NN compensator with hidden-layer-to-output-layer weight update rule is combined with sliding mode controller in order to reduce the error of the estimates of both disturbances and nonlinear functions. The whole closed loop system rejects disturbances excellently and is proved to be ultimately uniformly bounded(UUB) provided that certain conditions for design parameters are satisfied.

  • PDF

Design on Yawing And Depth Controller And Analysis of Disturbance Characteristic about the AUV ISiMI (자율무인잠수정 이심이의 선수각 및 심도 제어기 설계와 외란 특성 분석)

  • Ma, Sung-Jin;Jun, Bong-Huan;Lee, Pan-Mook;Kim, Sang-Bong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.351-354
    • /
    • 2006
  • In underwater environment, the control of AUV is difficult, because of the existence of parameter uncertainties and disturbances as well as highly nonlinear and coupled system dynamics. The requirement for the simple and robust controller which works satisfactorily in those dynamical uncertainties, call for a design using the PD or sliding mode controller. The PD controller is very popular controller in the industrial field and the sliding mode controller has been used successfully for the AUV controller design. In this paper, the two controllers arc designed for ISiMI(Integrated Submergible Intelligent Mission Implementation) AUV and the performances are compared by numerical simulation under the modeling uncertainty and disturbances. The design process of PD and sliding mode controller for ISiMI AUV and simulation results are included to compare the performances of the two controllers.

  • PDF

Efficiency Optimization with Sliding Mode Observer for Induction Motor (슬라이딩 모드 관측기를 이용한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.74-76
    • /
    • 2009
  • In this paper, search method and sliding mode observer are developed for efficiency optimization of induction motor. The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. The search controller is based on the "Rosenbrock" method and finds the flux level at the minimum input power of induction motor. Once this optimal flux level has been determined, this information is utilized to update the rule base of a fuzzy controller A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is also used to compensate for mechanical uncertainties in the speed control of induction motor. Simulation results are presented to validate the proposed controller.

  • PDF

Reconfigurable Flight Control System Design Using Sliding Mode Based Model Following Control Scheme

  • Cho, Dong-Hyun;Kim, Ki-Seok;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, a reconfigurable flight control system is designed by applying the sliding mode control scheme. The sliding mode control method is a nonlinear control method which has been widely used because of its merits such as robustness and flexibility. In the sliding mode controller design, the signum function is usually included, but it causes the undesirable chattering problem. The chattering phenomenon can be avoided by using the saturation function instead of signum function. However, the boundary layer of the sliding surface should be carefully treated because of the use of the saturation function. In contrast to the conventional approaches, the thickness of the boundary layer of our approach does not need to be small. The reachability to the boundary layer is guaranteed by the sliding mode controller. The fault detection and isolation process is operated based on a sliding mode observer. To evaluate the reconfiguration performance, a numerical simulation using six degree-of-freedom aircraft dynamics is performed.

Sliding Mode Control with Target Variation Rate of Lyapunov Function for Seismic-Excited Structures (Lyapunov함수의 목표 변화율을 이용한 가진된 건물의 슬라이딩 모드 제어)

  • 이상현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.163-171
    • /
    • 2001
  • This paper presents sliding mode control(SMC) method using target variation rate of Lypunov Function. SMC keeps the response of structure in sliding surface where structure is stable. It can design both linear controller and bang-bang controller. Linear control of previous research, however, can not make most of the performance of controller, because it is designed to satisfy the condition that the variation rate of Lyapunov function is minus. Also, incase of bang-bang controller, unnecessary large control force is generated. Presented method can utilize the capacity of controller efficiently by prescribing the target variation rate of Lyapunov function. Numerical simulation results indicate that the presented control methods can reduce the peak response larger than linear control, and it has control performance equivalent to bang-bang control.

  • PDF

Discrete-Time Sliding Mode Controller for Linear Time-Varying Systems with Disturbances

  • Park, Kang-Bak
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-247
    • /
    • 2000
  • In this paper, a discrete-time sliding mode controller for linear time-varying systems with disturbances is proposed. The proposed method guarantees the systems state is globally uniformly ultimately bounded(G.U.U.B) under the existence of time-varying disturbances.

  • PDF

Design of Robot Controller using Time-Varying Sliding Surface (시변 슬라이딩 평면을 이용한 로봇 제어기의 설계)

  • Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.359-361
    • /
    • 1993
  • In this paper, a variable structure controller with time-varying sliding surface is proposed for robot manipulators. The proposed time-varying sliding surface ensures the existence of sliding mode from an initial state, while the contentional sliding surface cannot achieve the robust performance against parameter variations and disturbances before the sliding mode occurs. Therefore, error transient can be fully prescribed in advance for all time. Furthermore, it is shown that the overall system is globally exponetially stable. The efficiency of the proposed method for the trajectory tracking has been demonstrated by simulations.

  • PDF

Design of Sliding Mode Controller for Induction Motor to Remove Chattering (채터링 제거를 위한 유도 전동기의 슬라이딩 모드 제어기 설계)

  • 김성읍;곽군평;안호균
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.240-245
    • /
    • 1998
  • This paper presents an improved sliding mode controller design for induction motor. In place of the discontinuous control inputs, continuous inputs are proposed in order to remove the undesirable chattering phenomena, which represent major drawbacks of the sliding mode controller. The design strategy is illustrated with a microprocessor based implementation for the velocity control of an induction motor. An induction motor is operated under sling mode control such that the motor angular velocity follows a predetermined trajectory. The experimental results confirm the validity of the proposed method.

  • PDF