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Design of Robot Controller using Time-Varying Sliding Surface

Ju-Jang Lee
Department of Electrical Engineering, KAIST

Abstract

In this paper, a variable structure controller with time-
varying sliding surface 1s proposed for robot manipula-
tors. The proposed time-varying sliding surfoce ensures
the eztstence of sliding mode from an inttial state, while
the conventional sliding surface cannot achieve the ro-
bust performance against parameter variations and dis-
turbances before the sliding mode occurs. Therefore, error
transient can be fully prescribed in advance for all time.
Furthermore, it is shown that the overall system is glob-
ally exponentially stable.

The efficiency of the proposed method for the trajectory
.tracking has been demonstrated by simulations.

1 Introduction

In the conventional controller design for robotic manip-
ulator, the control algorithm is based on nonlinear com-
pensations of the plant. This approach requires a detail
model of the manipulator and an exact load forecast {2].
In order to avoid these requirement, several control al-
gorithms using the theory of variable structure systems
(V8S) have been developed [3},[4],(6],{7].

The VS8 is a special class of the nonlinear systems
characterized by a discontinuous control action which
changes a structure upon reaching a set of sliding sur-
faces. A fundamental property of VSS is the sliding mo-
tion of the state vector on the intersection of the sliding
surfaces. In the sliding mode the system has invariance
properties, yielding the motion which is independent of
parameter uncertainties and external disturbances, and
the system behaves like a linear system [1},[5].

In the design of variable structure controller (VSC)
with conventional sliding surfaces, the sliding mode is
attained when the system state reaches and remains in
the intersection of the all sliding surfaces. Thus there is
a reaching phase in which the trajectories starting from
a given initial state off the sliding surface tend towards
the sliding surfaces. In other words, the trajectories are
sensitive to parameter variations and disturbances before
the sliding mode occurs.

This paper presents a variable structure controller with
time-varying sliding surface designed to guarantee the
sliding mode occurrence from a given initial state. For

the proposed control law, the sliding condition is always
guaranteed. Hence, the system is always confined to be
in the sliding mode for all time. In addition, the proposed
sliding surface comprises a set of decoupled linear differ-
ential equations. As a result, the highly coupled nonlin-
ear system is completely decoupled and linearized. Most
significantly, when the initial conditions are given, the
system’s behavior can be fully predicted and has noth-
ing to do with parameter variations and external distur-
bances.

The existence of sliding modes on these time-varying
sliding surfaces are verified by Lyapunov second method.
The effectiveness of the proposed time-varying sliding
surfaces is demonstrated through the digital simulations
for a two degrees-of-freedom robot manipulator.

2 Modeling of Robotic Manipulator

The dynamic equation of an n degrees-of-freedom robot
manipulator can be derived using Lagrangian formulation
as
Mi+Bi+h=u+d {1)
where

¢,4,4 : n X1 position, velocity and acceleration
vectors, respectively,

M : M(q), n x n symmetric and positive-
definite inertial matrix,

B : B{g,§), n X n matrix corresponding to
Coriolis and centrifugal factors,

h @ h{g), n x 1 vector caused by

gravitational force,
n % 1 control input vector,
n X 1 bounded disturbance vector.

a R

Let

M = M +AM,
B = B'+AB,
R = h'+Ah,

where “°” denotes the mean value and “A” denotes the
estimation error. Assume that the AM;;, AB;; and Ah;
are bounded by M B"‘ and h7* as follows

iy

lAM;| < M7,
|AB;l < Bf,
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|ak] < AP,

where “m” denotes the maximal absolute estimation er-
ror of each element. At the same time, we assume

|di} < &

3 Design of Control System

Define the tracking error as

¢(t) = q(t) — qa(2),

where g4(t) represents the desired trajectory. We choose
a time-varying sliding surface as

S.’(t) = é,'(t) 4+ A.’C,‘(t) et (é.’(to) + A,’C;(to))e_k‘(t—to),
that is,

s(t) = é(t) + Ae(t) — N(t), (2)
where s € R*, s = [s1,82,-*,84]T, A € R™", N € ®",
and

A = dia-g(Al)Ah"'»An)y A,‘>0,

(éx(to) + Area(to))eHe (-t
(éz(to) + Azez(to))e_k’(t-t")

N(t) ki >0,

(én(to) + A,,e,:(to))c—k,. {t—to)

and 1 = 1, 2, --+, n. We consider the following positive-
definite function as a Lyapunov function candidate

V= %sTM s. (3)

Differentiating Equation (3) with respect to time and
adopting the relation between M{q) and B(g,q) 4], we
have

v sTMs+ 8" Bs
&7 (M3 + Bs)
§T (M§— Mg, + MAé + MKN + Bs)
s7 (u+d—Bj—h+M{Aé+KN—§y)+Bs)
= f(u+d—h+M(Aé+ KN —§)

+B(s—q) (4)
where K = diag(k,, k2, +, ko). Therefore, the equivalent
control input is

uy=-M' (Aé+ KN —G)— B (s—g) +h’. (5)

Now, we introduce the control input such as

U=y, — F.sgn(s) (6)
where “o” means the element-by-element multiplication
of two vectors, and

F = M™|Aé+ KN —go|+B™|s~g|+h™
+d™ +1n,
7= [m, N,y
sgn(s) = [sgn(s1), sgn(ss), -

1 ifs; >0
0
-1

ifs; =0, 1=1,2,:-4,n,
and the absolute of a vector denotes the vector whose ele-

]T1 ;> 0,

-+, sgn(sn) 7,

sgn(s;) i ¢
I8 <

ment has its absolute value, i.e., [z} = [|z4], |z2],- -, |za]]7.

Lemma 1 For the robot manipulator (1) and the control
law (6), the sliding mode ezists from a given initial state.

Proof
Inserting Equation (6) in Equation (4), we obtain
V = T {-M' (A + KN ~d) - B (s~ §) +4°
= (M™|Aé+ KN — Gg| + B™|s — g| + h™
+d™ +n)esgn(s) +d—h
+M(Aé+ KN - @)+ B(s—g) }
= T {(M-M")(Aé + KN - &)
+(B-B") (s — §) ~ M™|Aé + KN — G|
esgn(s) — B™|s — | e sgn(s) + (h° — h)
—h™ e sgn(s) +d — d™ e sgn(s) — nesgn(s)}
< - Z i s
i=1

Therefore, V is really a Lyapunov function. Since V< 0,
V = 0is true only for s = 0, and V (¢5) = 0, the Lyapunov
function V (t) is equal to zero for all time. This also
implies that

Thus, the system is forced to stay in the sliding mode
from a given initial state.

O

Lemma 2 The evolution of the i-th joint’s tracking er-
ror, &(t), can be predicted as

27 [(6to) + kies(to))e™=1) — (é4(to)
+Aiei(t0))c—h(‘_¢“)] it ki # X,
eita)e2Ut0) - (&:(to) + Mies{to)) ( — to)
e ltmh) if ;= ),

c;(t) =

(8)
Jor all time t > t,.
Proof
Using Equation (7), we can obtain the following equation.

s.-(t) = é.'(t) -+ A;c;(t) - (é,'(to) -+ A,—e.-(to))c"""("“') =0
Yt > to,

where ¢ = 1, 2, ---, n. By solving the above differential
equation, we can easily conclude that the tracking error
is given by Equation (8). Since the detail derivation is
somewhat tedious, we omit the details. O

From the above lemma, we can conclude that the time
history of the tracking error for each joint can be pre-
dicted completely for all time and they are decoupled
each other. Therefore, we can derive the following theo-
rem.

Theorem 1 For the robot manipulator (1) and the con-
trol law (6), the overall system is globally exponentially
stable.

Proof
We choose the constants 4;, B; as follows

A = |k'—-i—,\~',- [lé;(to) -+ kie\'(to)'
+|é:(ta) + «\aea(to)l]
B; = min{\,k}
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where i = 1, 2, -+, n. Then from Equation (8), it is

obvious that the following inequality is guaranteed for

all 1, )
lei(t)] < Ase™Bst0) v > ¢,

Therefore, the overall system is globally exponentially

stable.

0

4 Simulation Results

Figure 1 shows a two degrees-of-freedom robot manip-
ulator model used by Young [6]. The dynamic equation
is given by

M(q)q+ B(g,4)d +h{g) =u+d
where ¢ = [q1 ¢;]",

My = (my+me)rl b marl b 2marircos g + )
My = My = m;r% + Myryrs COS G2
My = myi+ ],
Bn = ~2maringssing
By, = —mgrimg;sing
Byy = mgriragising
Bzz = 0
hy = {{mi+ma)ricosg + myrycos(qr + ¢2)} g

hy = marigcos(q + ).

Parameter values are the same as those of [6].

Figure 2 shows the actual error transient of joint 1 and
the predicted error transient that was given by Equation
(8) in the lemma 2. From this figure, we can find that
there is no difference between the predicted error tran-
sient and actual error transient. Therefore, we can com-
pletely prescribe the actual error transient in advance.
The sliding surface, s{t), of the proposed method and the
conventional one are shown in Figure 3. For the proposed
method, this figure shows that s{t) = 0Vt > 0, while, for
the conventional case, that condition cannot be guaran-
teed. So, the overall system using proposed method is
robust against parameter uncertainties and external dis-
turbances for all time.

5 Conclusions

In this paper, a time-varying sliding surface is proposed
in order to remove the reaching phase. The proposed
control system guarantees that the system states are in
the sliding mode from a given initial state and so the er~
ror transient can be fully prescribed in advance and the
system has robust performance for all time. Therefore
overall system is robust from an initial time against pa~
rameter variations and external disturbances, and load
forecast is not needed.
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Figure 1. Two degrees-of-freedom robot manipulator.
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Figure 2. Actual and predicted error transient.
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Figure 3. Sliding surface, s(t}.
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