• 제목/요약/키워드: slab member

검색결과 114건 처리시간 0.021초

철근콘크리트 암거의 형상 최적화 (Shape Optimization for Reinforced Concrete Culvert)

  • 김기대
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.261-268
    • /
    • 2002
  • In this paper, the shape optimization is considered over the upper slab of reinforced concrete culvert. The sequential linear programming method (SLP) is used as a rational approach to this shape optimization. To make a comparison between the arch shaped member and the straight member for the upper slab, the culverts with 5~20m earth height were adopted. It is shown that the optimum rise/span is about 7%-13%, and the arch shaped member is more cheap (over 10%) than the straight member for the construction cost.

  • PDF

롱라인 공법으로 제작한 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도 평가 (Flexural Strength Estimation of Half-Depth Precast Concrete Composite Slab Manufactured by the Long-Line Method)

  • 최진우;서수홍;주형중;윤순종
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.48-56
    • /
    • 2013
  • 프리텐션 방식을 사용한 PSC 휨부재는 시공이 간편하고 품질관리가 용이하기 때문에 최근 토목분야에서 적용된 사례가 증가하고 있다. 특히, PSC 휨부재의 종류 중 하나인 반단면 프리캐스트 콘크리트 합성 슬래브는 롱라인 공법을 적용하여 최근에 개발되었다. 반단면 프리캐스트 콘크리트 합성 슬래브는 프리캐스트 콘크리트와 현장타설 콘크리트를 합성하여 제작한다. 이 연구에서는 롱라인 공법으로 제작한 프리캐스트 PSC를 적용한 반단면 프리캐스트 콘크리트 합성 슬래브의 프리스트레스 도입 효율과 휨강도에 대한 실험을 실시하고 그 결과를 제시하였다. 롱라인 공법은 한번의 긴장력 도입으로 여러 개의 부재를 생산할 수 있는 장점이 있다. 또한, 프리캐스트 PSC 내에 매입되어 있는 철근의 영향을 고려하여 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도를 합리적으로 평가할 수 있는 식을 제시하였다.

겨울철 보통강도 콘크리트의 부재 두께 변화에 따른 초기동해 피해분석 (An Analysis on the Early Frost Damage According to the Component Thickness Changes of the Normal Strength Concrete Slab in Winter)

  • 김태우;이영준;김동규;김대건;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.145-146
    • /
    • 2018
  • In this study, the purpose of the study is to determine the depth of damage caused by early frost damage in concrete slab structures under the conditions of external temperature during winter. In other words, we intend to analyze the depth variation of the early frost damage as the thickness of the normal strength concrete slab members changes. As a result, the thinner the component was, the deeper the early frost damage was found to be, and the resulting increase in brightness of the concrete was delayed. and It is analyzed that under this test condition, an early frost damage was created with a thickness of 50 mm for the member and a thickness of 39 mm for the member of 300 mm.

  • PDF

부착 안된 부분 P.C 슬래브의 해석 (Analysis of Partially Prestressed Concrete Slab without bond)

  • 박흥용;최익창;연준희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.13-18
    • /
    • 1990
  • This paper introduced truss model and one-way slab elastic Model to analyse flexure of unbonded prestressed concrete member. After cracking, we could determine concrete membrane depth, deflection and stress. In order to do that, an numerical example of simply supported one way slab which has non-external membrane support(s=0) is analysed. The analytical results using the analytical model were compared with several experimental results and were generally satisfied.

  • PDF

FRP 모듈형 박스 부재의 연결 시스템에 관한 실험적 연구 (An Experimental Study on Connection System of FRP Modular Box Member)

  • 곽계환;장화섭;양동운;김호선
    • 한국농공학회논문집
    • /
    • 제51권4호
    • /
    • pp.29-36
    • /
    • 2009
  • This is a basic experimental study to apply FRP modular box member to a variety of construction structures exposed to flexural strength, such as a slab and a girder. Applying FRP modular box member to a real structure requires a large section. FRP box member was made into modular systems. Tests were conducted under various conditions in order to analyze jointing performance of the developed FRP modular box member as a large section. For the methods of jointing FRP modular box member, synthetic resins connection, mechanical connection, and a combination of both were used to test both length and breadth connection. As a result of the test, using urethane + two bolts + sheets was the most efficient method of connecting FRP modular box member. It is expected that the proposed joint system in this study will contribute to the increase of failure load and synthesis behavior of FRP modular box member.

Simulating large scale structural members by using Buckingham theorem: Case study

  • Muaid A. Shhatha
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.133-145
    • /
    • 2023
  • Scaling and similitude large scale structural member to small scale model is considered the most important matter for the experimental tests because of the difficulty in controlling, lack of capacities and expenses, furthermore that most of MSc and PhD students suffering from choosing the suitable specimen before starting their experimental study. The current study adopts to take large scale slab with opening as a case study of structural member where the slab is squared with central squared opening, the boundary condition is fixed from all sides, the load represents by four concentrated force in four corners of opening, as well as, the study adopts Buckingham theorem which has been used for scaling, all the parameters of the problem have been formed in dimensionless groups, the main groups have been connected by a relations, those relations are represented by force, maximum stress and maximum displacement. Finite element method by ANSYS R18.1 has been used for analyzing and forming relations for the large scale member. Prediction analysis has been computed for three small scale models by depending on the formed relations of the large scale member. It is found that Buckingham theorem is considered suitable way for creating relations among the parameters for any structural problem then making similitude and scaling the large scale members to small scale members. Finally, verification between the prediction and theoretical results has been done, it is observed that the maximum deviation between them is not more than 2.4%.

프리스트레스트 중공 슬래브 강연선의 전달길이 평가에 대한 실험적 연구 (An Experimental Study on the Estimation of Transfer Length of Strand in the Prestressed Hollow Core Slab)

  • 이정수;류종현;권승희;김진국
    • 한국건설순환자원학회논문집
    • /
    • 제10권4호
    • /
    • pp.395-401
    • /
    • 2022
  • 이 연구에서는 프리텐션 기법으로 제작되는 중공 슬래브(hollow core slab, HCS) 부재 3종(H200, H320, H400)에 대하여 강연선의 전달길이를 평가하고 기존 설계식과 비교하였다. HCS 부재의 측면에 일정한 간격을 두어 변형률 게이지를 부착하였으며, 절단 과정에서 발생하는 변형률을 측정하였다. 변형률은 절단면에서 0이며, 부재의 중앙으로 갈수록 점차 증가하여 전달길이 위치에서 일정한 값을 보인다. 강연선이 한 가닥씩 배치되는 H200의 경우 대부분 설계식 범위 내(최대 762 mm)에 전달길이가 형성되나, 강연선이 세 가닥 배치되는 H320과 H400의 전달길이는 설계 범위보다 높은 수준(850 mm 이상)으로 나타났다.

Layer모델에 의한 와이어 메쉬 하프슬래브의 해석 (Analysis of Wire-Mesh Half Slab by Layer Model)

  • 이원호;이리형;정란;박칠림
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.73-80
    • /
    • 1994
  • This paper is to study the mechanical behavor and structural safety of the wire-mesh half slab by an analytical method. Layer model was adopted by modelling the wire-mesh half slab as a flexural member composed of free cantilever beam and vertical supports (walls or beams). Reasonable results for the prediction of ultimate strength of the half stab at each loading direction and design recommendations for the reinforcement detail at wall(beam)-slab joints are acquired. On the other hand, ductility capacity of the wire-mesh half slab was overestimated by not considering the brittleness of wire-mesh reinforcements pre-manufactured at the form of Kaiser Truss.

  • PDF

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

플랫 슬래브 주차장 구조물의 차량 하중 영향 연구 (Vehicle Load Effects of Flat Slab Parking Structures)

  • 곽효경;이기장;이정원;송종영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.143-150
    • /
    • 2001
  • In this paper, the effects of vehicle loads on flat slab system are investigated based on the previous studies on beam-girder parking structural system. The influence surfaces of flat slab for typical design section are determined for the purpose of obtaining member forces under vehicle loads. In addition, the equivalent vehicle load factors for flat slab parking structures are suggested using neural network. It has been found that vehicle load effects of flat slab system are dominant for the center positive moment in both column and middle strip, as like beam-girder parking structural system.

  • PDF