DOI QR코드

DOI QR Code

An Experimental Study on the Estimation of Transfer Length of Strand in the Prestressed Hollow Core Slab

프리스트레스트 중공 슬래브 강연선의 전달길이 평가에 대한 실험적 연구

  • Jung-Soo, Lee (Hybrid Structural Testing Center, Myongji University) ;
  • Jong-Hyun, Ryu (R&D institute, GS E&C) ;
  • Seung-Hee, Kwon (Department of Civil and Environmental Engineering, Myongji University) ;
  • Jin-Kook, Kim (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 이정수 (명지대학교 하이브리드구조실험센터) ;
  • 류종현 (GS건설 기술연구소) ;
  • 권승희 (명지대학교 토목환경공학과) ;
  • 김진국 (서울과학기술대학교 건설시스템공학과)
  • Received : 2022.10.24
  • Accepted : 2022.11.26
  • Published : 2022.12.30

Abstract

In this study, the transfer length of strand was measured for three types of HCS member(H200, H320, and H400) manufactured by the pretension method. Strain gauges were attached in longitudinal direction at regular intervals on the sides of the HCS members, and the strain was measured during the cutting process of HCS. The stain at the cutting point was zero, and gradually increases in the central direction of the member, converging to a constant value after passing the transfer length. In the case of H200 members in which the strands were arranged one by one, the transfer lengths were formed within the range of the design equation (up to 762 mm). The transfer length of the H320 member and the H400 member, in which three strands were arranged, was higher than the design range (850 mm or more).

이 연구에서는 프리텐션 기법으로 제작되는 중공 슬래브(hollow core slab, HCS) 부재 3종(H200, H320, H400)에 대하여 강연선의 전달길이를 평가하고 기존 설계식과 비교하였다. HCS 부재의 측면에 일정한 간격을 두어 변형률 게이지를 부착하였으며, 절단 과정에서 발생하는 변형률을 측정하였다. 변형률은 절단면에서 0이며, 부재의 중앙으로 갈수록 점차 증가하여 전달길이 위치에서 일정한 값을 보인다. 강연선이 한 가닥씩 배치되는 H200의 경우 대부분 설계식 범위 내(최대 762 mm)에 전달길이가 형성되나, 강연선이 세 가닥 배치되는 H320과 H400의 전달길이는 설계 범위보다 높은 수준(850 mm 이상)으로 나타났다.

Keywords

Acknowledgement

본 연구는 GS건설 기술연구소의 연구비 지원에 의해 수행되었으며, 이에 감사드립니다.

References

  1. ACI Committee 318 (2019). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute, Farmington Hills, MI.
  2. Balazs, G. (1992). Transfer control of prestressing strands, PCI Journal, 37(6), 60-71.
  3. Briere, V., Harries, K.A., Kasan, J., Hager, C. (2013). Dilation behavior of seven-wire prestressing strand-the Hoyer effect, Construction and Building Materials, 40, 650-658. https://doi.org/10.1016/j.conbuildmat.2012.11.064
  4. CEN (2004). EN 1992-1-2 Eurocode 2: Design of concrete structures. Part 1-2: General rules-Structural fire design, Comite Europeen de Normalisation, Brussels, Belgium.
  5. Cousins, T.E., Johnston, D.W., Zia, P. (1990). Transfer and development length of epoxy coated and uncoated prestressing strand, PCI Journal, 35(4), 92-103. https://doi.org/10.15554/pcij.07011990.92.103
  6. Dang, C.N., Floyd, R.W., Hale, W.M, Marti-Vargas, J.R. (2016). Measured transfer lengths of 0.7 in. (17.8 mm) strands for pretensioned beams, ACI Structural Journal, 113(3), 525-535.
  7. Han, S.W., Moon, K.H., Kang, D.H., Im, J.H., Kim, Y.N. (2014). Evaluation of shear strength of precast-prestressed hollow core slabs based on experiments, Journal of the Korea Concrete Institute, 26(5), 635-642 [in Korean].
  8. Hanson, N.W. (1969). Influence of surface roughness of prestressing strand in bond performance, PCI Journal, 14(1), 32-45 https://doi.org/10.15554/pcij.02011969.32.45
  9. Kaar, P.H., Hanson, N.W. (1975). Bond fatigue tests of beams simulating pretensioned concrete crossties, PCI Journal, 20(5), 65-80. https://doi.org/10.15554/pcij.09011975.65.80
  10. Kang, J.H., Kang, S.M., Eom, T.S., Kim Y.D., Park, H.S. (2022). Shear strength of prestressed hollow core slabs according to section shape, Journal of the Korea Concrete Institute, 34(1), 73-82 [in Korean]. https://doi.org/10.4334/JKCI.2022.34.1.073
  11. KDS 24 14 20 (2018). Korea Construction Standards Center, Korea [in Korean].
  12. KDS 24 14 21 (2021). Korea Construction Standards Center, Korea [in Korean].
  13. Kim, J.H., Moon, D.Y., Ji, G.S., Kim, K.S. (2008). Dynamic behavior of pretensioned concrete member during detensioning, KSCE Journal of Civil and Environmental Engineering Research, 28(5A), 747-756 [in Korean].
  14. Kim, J.K., Yang, J.M., Yim, H.J. (2016). Experimental evaluation of transfer length in pretensioned concrete beams using 2,400-MPa prestressed strands, Journal of Structural Engineering, 142(11), 04016088.
  15. KS F 2730 (2018). Testing Method for Rebound Number to Conclude Compressive Strength of Concrete, KS Standard, Korea [in Korean].
  16. Lee, Y.J., Kim, H.G., Kim, M.J., Kim, D.H., Kim, K.H. (2020). Evaluation of flexural performance for prestressed concrete hollow core slabs, Journal of the Korea Concrete Institute, 32(2), 193-200 [in Korean]. https://doi.org/10.4334/jkci.2020.32.2.193
  17. Marti-Vargas, J.R., Arbelaez, C.A., Serna, P., Navarro-Gregori, J., Pallares-Rubio, L. (2007). Anlaytical model for transfer length prediction of 13 mm prestressing strand, Structural Engineering and Mechanics: An International Journal, 26(2), 211-229.
  18. Meyer, K.F. (2002). Transfer and Development Length of 0.6-inch Diameter Prestressing Strand in High Strength Lightweight Concrete, Georgia Institute of Technology.
  19. Mitchell, D., Cook, W.D., Khan, A.A., Tham, T. (1993). Influence of high strength concrete on transfer and development length of pretensioning strand, PCI Journal, 38(3), 52-66. https://doi.org/10.15554/pcij.05011993.52.66
  20. Oh, B.H., Kim, E.S. (2000). Influencing factors and evaluation of transfer lengths in pretensioned prestressed concrete members, KSCE Journal of Civil and Environmental Engineering Research, 20(6-A), 945-956 [in Korean].
  21. Oh, B.H., Lim, S.N., Lee, M.K., Yoo, S.W. (2014). Analysis and prediction of transfer length in pretensioned, prestressed concrete members, ACI Structural Journal, 111(3), 549-560. https://doi.org/10.14359/51686571
  22. Oh, Y.H., Moon, J.H., Yoon, Y.J., Lee, J.S. (2021). Experimental study on a web shear design equation for composite precast concrete hollow core slabs, Journal of the Korea Concrete Institute, 33(5), 509-517 [in Korean].
  23. Russell, B.W., Burns, N.H. (1997). Measurement of transfer lengths on pretensioned concrete elements, Journal of Structural Engineering, 123(5), 541-549.
  24. Yang, J.M., Yim, H.J., Kim, J.K. (2015). Transfer length of 2,400 MPa PS strand in 15 m-long full-scale pretensioned prestressed concrete beam, Journal of the Korean Society of Hazard Mitigation, 15(5), 139-146 [in Korean].
  25. Yang, J.M., Yim, H.J., Kim, J.K. (2016). Transfer length of 2400 MPa seven-wire 15.2 mm steel strands in high-strength pretensioned prestressed concrete beam, Smart Structures and Systems, 17(4), 577-591. https://doi.org/10.12989/sss.2016.17.4.577
  26. Yim, H.J., Kim, J.K., Yang, J.M. (2015). Experimental study on the transfer length in pretensioned prestressed concrete beam using 2,400 MPa PS strand, Journal of the Korean Society of Hazard Mitigation, 15(2), 41-49.