• Title/Summary/Keyword: slab member

Search Result 114, Processing Time 0.023 seconds

Shape Optimization for Reinforced Concrete Culvert (철근콘크리트 암거의 형상 최적화)

  • Kim, Kee-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.261-268
    • /
    • 2002
  • In this paper, the shape optimization is considered over the upper slab of reinforced concrete culvert. The sequential linear programming method (SLP) is used as a rational approach to this shape optimization. To make a comparison between the arch shaped member and the straight member for the upper slab, the culverts with 5~20m earth height were adopted. It is shown that the optimum rise/span is about 7%-13%, and the arch shaped member is more cheap (over 10%) than the straight member for the construction cost.

  • PDF

Flexural Strength Estimation of Half-Depth Precast Concrete Composite Slab Manufactured by the Long-Line Method (롱라인 공법으로 제작한 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도 평가)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.48-56
    • /
    • 2013
  • Prestressed concrete (PSC) members are readly available in civil engineering applications due to the convenience of construction and easy of quality control in the manufacturing process of the member. Especially, half-depth precast concrete composite slab, which is one of the PSC flexural members is developed recently using the long-line method. The half-depth precast concrete composite slabs are composed of the precast concrete and the in-situ concrete placed at the site. In this paper, we present the results of experimental investigations pertaining to the pretensioning efficiency and the flexural behavior of half-depth precast concrete composite slab which is made of precast PSC manufactured by the long-line method. In the long-line method, the pretensioned precast member is manufactured simultaneously, by tensioning tendons at once. In addition, we suggest the equation that can estimate the flexural strength of half-depth precast concrete composite slab reasonably by considering the effects of rebar embedded in the precast PSC flexural member.

An Analysis on the Early Frost Damage According to the Component Thickness Changes of the Normal Strength Concrete Slab in Winter (겨울철 보통강도 콘크리트의 부재 두께 변화에 따른 초기동해 피해분석)

  • Kim, Tae-Woo;Lee, Yong-Jun;Kim, Dong-Gyu;Kim, Dae-Gun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.145-146
    • /
    • 2018
  • In this study, the purpose of the study is to determine the depth of damage caused by early frost damage in concrete slab structures under the conditions of external temperature during winter. In other words, we intend to analyze the depth variation of the early frost damage as the thickness of the normal strength concrete slab members changes. As a result, the thinner the component was, the deeper the early frost damage was found to be, and the resulting increase in brightness of the concrete was delayed. and It is analyzed that under this test condition, an early frost damage was created with a thickness of 50 mm for the member and a thickness of 39 mm for the member of 300 mm.

  • PDF

Analysis of Partially Prestressed Concrete Slab without bond (부착 안된 부분 P.C 슬래브의 해석)

  • 박흥용;최익창;연준희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.13-18
    • /
    • 1990
  • This paper introduced truss model and one-way slab elastic Model to analyse flexure of unbonded prestressed concrete member. After cracking, we could determine concrete membrane depth, deflection and stress. In order to do that, an numerical example of simply supported one way slab which has non-external membrane support(s=0) is analysed. The analytical results using the analytical model were compared with several experimental results and were generally satisfied.

  • PDF

An Experimental Study on Connection System of FRP Modular Box Member (FRP 모듈형 박스 부재의 연결 시스템에 관한 실험적 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Yang, Dong-Woon;Kim, Ho-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.29-36
    • /
    • 2009
  • This is a basic experimental study to apply FRP modular box member to a variety of construction structures exposed to flexural strength, such as a slab and a girder. Applying FRP modular box member to a real structure requires a large section. FRP box member was made into modular systems. Tests were conducted under various conditions in order to analyze jointing performance of the developed FRP modular box member as a large section. For the methods of jointing FRP modular box member, synthetic resins connection, mechanical connection, and a combination of both were used to test both length and breadth connection. As a result of the test, using urethane + two bolts + sheets was the most efficient method of connecting FRP modular box member. It is expected that the proposed joint system in this study will contribute to the increase of failure load and synthesis behavior of FRP modular box member.

Simulating large scale structural members by using Buckingham theorem: Case study

  • Muaid A. Shhatha
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.133-145
    • /
    • 2023
  • Scaling and similitude large scale structural member to small scale model is considered the most important matter for the experimental tests because of the difficulty in controlling, lack of capacities and expenses, furthermore that most of MSc and PhD students suffering from choosing the suitable specimen before starting their experimental study. The current study adopts to take large scale slab with opening as a case study of structural member where the slab is squared with central squared opening, the boundary condition is fixed from all sides, the load represents by four concentrated force in four corners of opening, as well as, the study adopts Buckingham theorem which has been used for scaling, all the parameters of the problem have been formed in dimensionless groups, the main groups have been connected by a relations, those relations are represented by force, maximum stress and maximum displacement. Finite element method by ANSYS R18.1 has been used for analyzing and forming relations for the large scale member. Prediction analysis has been computed for three small scale models by depending on the formed relations of the large scale member. It is found that Buckingham theorem is considered suitable way for creating relations among the parameters for any structural problem then making similitude and scaling the large scale members to small scale members. Finally, verification between the prediction and theoretical results has been done, it is observed that the maximum deviation between them is not more than 2.4%.

An Experimental Study on the Estimation of Transfer Length of Strand in the Prestressed Hollow Core Slab (프리스트레스트 중공 슬래브 강연선의 전달길이 평가에 대한 실험적 연구)

  • Jung-Soo, Lee;Jong-Hyun, Ryu;Seung-Hee, Kwon;Jin-Kook, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.395-401
    • /
    • 2022
  • In this study, the transfer length of strand was measured for three types of HCS member(H200, H320, and H400) manufactured by the pretension method. Strain gauges were attached in longitudinal direction at regular intervals on the sides of the HCS members, and the strain was measured during the cutting process of HCS. The stain at the cutting point was zero, and gradually increases in the central direction of the member, converging to a constant value after passing the transfer length. In the case of H200 members in which the strands were arranged one by one, the transfer lengths were formed within the range of the design equation (up to 762 mm). The transfer length of the H320 member and the H400 member, in which three strands were arranged, was higher than the design range (850 mm or more).

Analysis of Wire-Mesh Half Slab by Layer Model (Layer모델에 의한 와이어 메쉬 하프슬래브의 해석)

  • Yi, Waon-Ho;Lee, Li-Hyung;Chung, Lan;Park, Chil-Lim
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.73-80
    • /
    • 1994
  • This paper is to study the mechanical behavor and structural safety of the wire-mesh half slab by an analytical method. Layer model was adopted by modelling the wire-mesh half slab as a flexural member composed of free cantilever beam and vertical supports (walls or beams). Reasonable results for the prediction of ultimate strength of the half stab at each loading direction and design recommendations for the reinforcement detail at wall(beam)-slab joints are acquired. On the other hand, ductility capacity of the wire-mesh half slab was overestimated by not considering the brittleness of wire-mesh reinforcements pre-manufactured at the form of Kaiser Truss.

  • PDF

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

Vehicle Load Effects of Flat Slab Parking Structures (플랫 슬래브 주차장 구조물의 차량 하중 영향 연구)

  • 곽효경;이기장;이정원;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.143-150
    • /
    • 2001
  • In this paper, the effects of vehicle loads on flat slab system are investigated based on the previous studies on beam-girder parking structural system. The influence surfaces of flat slab for typical design section are determined for the purpose of obtaining member forces under vehicle loads. In addition, the equivalent vehicle load factors for flat slab parking structures are suggested using neural network. It has been found that vehicle load effects of flat slab system are dominant for the center positive moment in both column and middle strip, as like beam-girder parking structural system.

  • PDF