• 제목/요약/키워드: slab bridges

검색결과 250건 처리시간 0.027초

슬래브궤도의 콘크리트교량 적용성 검토 (Appliance of Slab tracks on the Prestressed Concrete Bridges)

  • 김남훈;임영수;신용준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1037-1043
    • /
    • 2007
  • The railroad systems with the ballast tracks have been widely used for a long time. But recently, the use of the slab track is being increased gradually with a technical developments. So, this paper deals with the appliance of the slab tracks on the railroad bridges. Firstly, review the design criteria of the railroad bridges related to the slab tracks for the stability and serviceability, based on DIN and EURO code. Then, perform the analysis of the railroad prestressed concrete bridges, and check whether the results of the analysis satisfy the design criteria. Finally, find the construction condition of bridges that all the design criteria are satisfied. As a result, to maintain the stability and serviceability of the bridges, bridges must have some restrictions, including a time of installation of the slab tracks. So, the construction schedule for the erection of the bridges will be carefully considered in case of the concrete railroad bridges with the slab tracks.

  • PDF

CFS로 보강된 모형 RC 슬래브 교량의 실험적 연구 (An Experimental Study on Half Scale RC Slab Bridges Strengthened with Carbon Fiber Sheet)

  • 심종성;김규선;김경민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.537-542
    • /
    • 1999
  • The design methodologies for carbon fiber sheet(CFS) strengthening of RC structures are not well established yet because the structural behavior of strengthened RC structures is more complex than that of unstrengthened ones. Even though the research for the methods using CFS has beed studied, the strengthening effects and structural behaviors of strengthened structures are not systematized yet. The purpose of this study is to carry out the experimental studies on three kinds of half scale RC slab bridges and to investigate the behavior of RC slab bridges from the experimental results. Typical flexural failure occurs in the non-strengthening slab like general RC slab bridges, and also the flexural failure occurs in the all area strengthened slab with sudden rip-off failure of strengthening material by punching shear. For the case of strip type strengthened slab, flexural failure occurs, with rip-off of second strip at the base of loading point. Strengthening effect on the slab using CFS is that the strength is increased upto 7~15 percent and the crack pattern is changed.

  • PDF

RC 슬래브교의 손상에 따른 거동 분석 및 손상 평가 프로세스 제안 (Behavior Analysis of RC Slab Bridge according to Demage and Suggestion of Its Evaluation Process)

  • 김유희;전준창
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.40-49
    • /
    • 2021
  • This study surveyed damage to small and medium-sized RC slab bridges, the largest in number in Korea. Four common types of damage were identified, and their static and dynamic structural behaviors were examined through structural analysis. The degree of damage was selected as an analysis parameter for three superstructures of RC slab bridges. After structural analysis, a damage assessment process was proposed that can be used as the basis for establishing maintenance yplans for these bridges. The results of the present study can be used for the safety management of RC slab bridges, classified as bridges suspected of safety flaws or requiring maintenance in load-carrying capacity tests.

네트형 슬래브교 외부강선 보강 공법 연구 (A Study of Net Type External Prestress Strengthening Method for Slab Bridges)

  • 한만엽;황태정
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.475-480
    • /
    • 2002
  • This study is to develop a strengthening method for slab bridges with external prestressing. There are so many different strengthening methods for damaged slab bridges, external prestressing method is the most effective, economical and durable strengthening method among them. But, its problem lies in anchoring devices, so recently, an effective anchoring method was developed and showed its improvements. In this study, a more improved method is suggested. Longitudinal tendons placed on both side of slab strengthens the whole bridge, and lateral tendons placed under the slab strengthens the middle of slab, and conveys the load at middle slab to both sides. Structural analysis for the tensile force for strengthening were analysed. Generally, 200-280tons for longitudinal tendon and 130-190 tons for lateral tendons are good enough to strengthen the damaged slab. This method has no upward roof work, so it is very convenient for installing. And no spaces under the slab are need, so it is good for shallow slabs which has less space under the slab.

  • PDF

네트형 슬래브교 외부강선 보강공법의 실험적 연구 (An Experimental Study on the Net Type Prestress Strengthening Method for Slab Bridges)

  • 한만엽;황태정
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.363-366
    • /
    • 2003
  • This study is to develop a strengthening method for RC slab bridges and rigid-frame bridges with external prestressing. In this study, we design the slab specimen that have a strengthening of the DB-13 and set up the longitudinal tendons placed on both side of slab strengthens the whole bridge, and lateral tendons placed under the slab strengthens the middle of slab, and conveys the load at middle slab to both sides. Structural analysis for the tensile force for strengthening were analysed and we know that displacement and strain was improved from this test. This method has no upward roof work, so it is very convenient for installing. And no spaces under the slab are need, so it is good for shallow slabs which has less space inder the slab.

  • PDF

Conceptual design of prestressed slab bridges through one-way flexural load balancing

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.615-642
    • /
    • 2013
  • In this paper a study on prestressed concrete slab bridges is presented. A design philosophy based on the concept of load balancing through prestressing is proposed in order to minimize the effects of delayed deformations due to creep. Aspects related to the stress redistribution inside these bridges for time-dependent phenomena are analyzed and discussed, by applying the principles of aging linear visco-elasticity. Prestressing is seen as an equivalent external load which counterbalances the permanent loads applied to the bridge, nullifying the elastic deflections due to sustained loads, and thus avoiding the related delayed deformations. An optimization of the structural behavior through the use of one-way prestressing is achieved. The determination of a convenient variable depth of slab bridges and the correspondent layout of tendons is considered as a useful means for applying the load balancing concept in actual cases of structures like long cantilevers or bridge decks. A case-study related to the slab bridges built 30 years ago at Jeddah in Saudi Arabia is presented and discussed, in order to show the effectiveness of the proposed approach to the conceptual design of prestressed concrete bridges.

RC 슬래브 교량의 현장재하시험을 통한 안전성 평가 (Safety Evaluation through Field Load Test of RC Slab Bridge)

  • 조한민
    • 도시과학
    • /
    • 제11권1호
    • /
    • pp.9-13
    • /
    • 2022
  • Currently, RC slab bridges in use in Korea account for most of the total bridges, and bridges with a service life of 20 years or more account for about 75%. However, most of these RC slab bridges have a span of less than 20m and are not included in the first and second types of facilities, so maintenance is very neglected. Therefore, in this study, field load test is performed on an aged RC slab bridge, and the performance evaluation is performed based on the structural response results (deflection, impact coefficient, natural frequency, etc.) of the bridge obtained through field load test. In addition, the performance evaluation results obtained through the load test are intended to be used as basic data for the damage evaluation process of the bridge currently under development.

조립식 PSC 중공슬래브교의 휨거동에 관한 연구 (A Study on Flexural Behavior of Precast Prestressed Concrete Hollow Slab Bridge)

  • 김기용;송하원;김호진;변근주;김윤수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.524-527
    • /
    • 2004
  • Recently, precast concrete products have been increasingly used in the construction of bridges except for special bridges like long-span bridge due to their easy and high-quality construction. Specially the use of precast prestressed concrete hollow box slab bridges is also increased due to the merits in their construction. Thus, an experimental evaluation of flexural behavior of the precast PSC hollow box slab bridges and a development of effective analytical technique for the behavior are necessary. For the development, experimental study on the flexural behavior of the precast bridges up to ultimate states is needed. In this study, two full-scale precast PSC hollow box slab girders are manufactured and full-scale flexural failure tests of the girders subjected to cyclic loading are carried out. For the failure analysis of the girders, the so-called volume control method is applied to finite element analysis of the precast PSC hollow box slab girders discretized using multi-layered shell elements. The analytical results by the volume control method is verified by comparing with test results.

  • PDF

기둥 지지된 슬래브교의 모멘트 간략산정법에 관한 연구 (Bending Moment Analysis simpiified in Slab Bridges supported by Column Type Piers)

  • 이채규;김영인;김우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.73-78
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than gravity type pier is used. To determine the longitudinal bonging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width, and thickness of the slab and column section size. Then the analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment by simple beam analysis.

  • PDF

바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구 (Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors)

  • 한상윤;박남회;윤기용;강영종
    • 한국강구조학회 논문집
    • /
    • 제16권3호통권70호
    • /
    • pp.325-332
    • /
    • 2004
  • 강합성거더 교량의 단면은 강거더와 콘크리트 슬래브의 합성정도에 따라 각각 비합성, 부분합성 그리고 완전합성 단면들로 구분 할 수 있다. 국내의 경우 강합성거더 교량의 단면을 합성시키기 위하여 일반적으로 전단 연결재 중 스터드를 사용하도록 규정하고 있고, 진단 연결재가 없는 경우 즉 비합성 단면의 경우에는 바닥판 앵커를 설치하도록 경험적으로 규정하고 있다. 그러나 바닥판 앵커를 사용한 단면의 실제 거동은 비합성 거동이 아닌 부분합성의 거동을 나타낸다. 그러한 이유로 본 연구에서는 바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험연구를 수행하였다. 실험연구를 통해서 바닥판 앵커의 초기강성을 산정하였고, 해석연구를 통해서 바닥판 앵커를 사용한 단순 및 2경간 연속 플레이트거더교의 합성정도를 비교$\cdot$분석하였다. 또한, 실험에 의해 산정된 강성 값에 근거하여, 2경간 연속 플레이트거더교에 바닥판 앵커를 적용하였을 때 발생할 수 있는 내부지점부 콘크리트의 인장응력 저감 효과를 검토하였다.