• Title/Summary/Keyword: skin barrier function$PPAR-{\alpha}$

Search Result 8, Processing Time 0.021 seconds

Effect of Heat-epimerized-catechin-mixture Rich in Gallocatechin-3-gallate on Skin Barrier Recovery (갈로카테킨-3-갈레이트가 풍부한 열전환 카테킨의 피부 장벽 회복에 대한 개선 효과)

  • Kim, Jeong-Kee;Shin, Hyun-Jung;Lee, Sang-Min;Jeon, Hee-Young;Lee, Sang-Jun;Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-99
    • /
    • 2008
  • Until now, (-)-epigallocatechin-3-gallate(EGCG) is known as the most powerful antioxidant among green tea catechins having many beneficial effects on human skin. Considering that the content of catechins is variable according to many conditions such as solvent, temperature and pressure, we prepared the heat-epimerized-EGCG-mixture (HE-EGCG-mix) containing high content of gallocatechin-3-gallate(GCG) by epimerization during autoclaving process and found out its optimal condition for maximizing conversion from EGCG to GCG. To investigate the effects of EGCG and HE-EGCG-mix on skin barrier function, we performed in vivo experiments with hairless mice. We found that HE-EGCG-mix has more potent stimulating activity than EGCG for the production of involucrin 7(INV7) and for recovery of barrier function in SKH-1 mice. Also, we found that GCG stimulates $PPAR-{\alpha}$ transactivation more effectively than EGCG in vitro by transient transfection assay for $PPAR-{\alpha}$ activation activity. These imply that HE-EGCG-mix consisting of high content of GCG should stimulate more efficiently recovery of skin barrier through PPAR-mediated-kerationocyte differentiation than EGCG. In conclusion, our study may provide a possibility that GCG, the C-2 epimer of EGCG, could be a potentially effective agent for development of new cosmetics or health foods for recovery of skin barrier.

Study on Keratinocyte Differentiation and Skin Barrier Function of Adeonphorae Radix Root Extracts (Adenophorae Radix 뿌리 추출물에 의한 Keratinocyte의 분화 및 피부장벽 기능에 대한 연구)

  • Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.329-335
    • /
    • 2017
  • We have studied on the keratinocytes differentiation and skin barrier function using Adenophorae radix (A. radix) root extract, which was known to contain triterpenoid, saponin and starch. A. radix root extracts showed the $PPAR{\alpha}$ expression level of Wy-14,643 $0.5-1.0{\mu}M$ in CV-1 cells. The cornified envelop formation (CE) of human keratinocyte cell line (HaCaT) and normal human keratinocyte (NHK) showed a statistically significant increased compared to the control. When HaCaT cells were treated with A. radix root extract, transglutaminase (TGase-1) was significantly increased. As a result of clinical study of the simple cosmetic formulation containing A. radix root extract for about 2 weeks, TEWL values were significantly decreased and water contents were increased. The ceramides, which were obtained from the inner forearm, were also significantly increased statistically. We suggest that the A. radix root extract can be used as a preventive and therapeutic agent for skin diseases such as dry skin and atopy.

Anti-oxidative and skin barrier effects of natural plants with a supercritical extract (초임계 추출을 적용한 식물추출물의 항산화 및 피부장벽 효과)

  • Kim, Bora;Lee, Su Min;Hwang, Tae-Young;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.597-601
    • /
    • 2013
  • In this study, we searched for bioactive compounds from natural resources with a supercritical extract. We selected the extracts of Chrysanthemum zawadskii, Lufa cylindrica, Paeonia lactiflora, Gardenia jasminoides and Scutellaria baicalensis, as natural materials, and evaluated the effects of their skin barrier function. We found that these extracts increased the transactivation activity of the PPAR-responsive element (PPRE) and the anti-oxidation with different priorities, respectively. In addition, these extracts promoted the expression of proteins related to cornified envelope (CE) formation, such as involucrin. From these results, we suggest that natural materials from supercritical extracts will be pertinent candidates for the improvement of the epidermal permeability barrier function.

Effect of Zanthoxylum piperitum Extract on Human Skin Protection from UVB by Regulation of COP1 and PPAR-α (초피나무 열매 추출물의 COP1 및 PPAR-α 조절을 통한 자외선에 대한 피부 보호 효과)

  • Kim, Yun-Sun;Kim, Yumi;Lee, Sanghwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.393-401
    • /
    • 2016
  • Ultraviolet (UV) irradiation from the sun is the primary environmental factor that causes skin damages including skin cancer and premature skin aging. Because, even the most powerful sunscreen can't always afford enough protection, it is necessary to enhance the defensive power of skin against UV. Recently, constitutive photomorphogenic protein-1 (COP1) has shown to contribute to the regulation of UVB response of keratinocytes. In this study, we represent that COP1 and its associated protein, de-etiolated 1 (DET1), might participate in photoaging process in human skin as Arabidopsis COP1 does sun-protective function in plants. After UVB irradiation, the decrease of COP1 and DET1 mRNA expression was followed by the increase of c-Jun total protein. Moreover, transfection with DNA vectors expressing COP1 and DET1 down-regulated the c-Jun total protein. We found that Zanthoxylum piperitum extract (ZE) up-regulated the expression of COP1 and DET1 on human keratinocytes, and inhibited the expression of MMP1 which is one of the genes regulated by c-Jun signal. In addition, ZE has been reported to stimulate PPAR-${\alpha}$ and strengthen the skin barrier. We found that ZE decreased the UVB-induced IL-6 and IL-8 in NHEK cells. In human study, ZE protected skin against UV-B induced erythema and erythema-induced pigmentation. These results indicate that ZE could be useful for the protection against the adverse effects of UV irradiation through various mechanisms.

Effect of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Skin Hydration and Barrier Function in Human Epidermal Keratinocytes

  • Woo, Seon Wook;Rhim, Dong-Bin;Kim, Changhee;Hwang, Jae-Kwan
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • The skin plays a key role in protecting the body from the environment and from water loss. Cornified envelope (CE) and natural moisturizing factor (NMF) are considered as the primary regulators of skin hydration and barrier function. The CE prevents loss of water from the body and is formed by cross-linking of several proteins. Among these proteins, filaggrin is an important protein because NMF is produced by the degradation of filaggrin. Proteases, including matriptase and prostasin, stimulate the generation of filaggrin from profilaggrin and caspase-14 plays a role in the degradation of filaggrin. This study elucidated the effects of an ethanol extract of Boesenbergia pandurata (Roxb.) Schltr., known as fingerroot, and its active compound panduratin A on CE formation and filaggrin processing in HaCaT, human epidermal keratinocytes. B. pandurata extract (BPE) and panduratin A significantly stimulated not only CE formation but also the expression of CE proteins, such as loricrin, involucrin, and transglutaminase, which were associated with $PPAR{\alpha}$ expression. The mRNA and protein levels of filaggrin and filaggrin-related enzymes, such as matriptase, prostasin, and caspase-14 were also up-regulated by BPE and panduratin A treatment. These results suggest that BPE and panduratin A are potential nutraceuticals which can enhance skin hydration and barrier function based on their CE formation and filaggrin processing.

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

The effect of two Terpenoids, Ursolic acid and Oleanolic acid on epidermal permeability barrier and simultaneously on dermal functions

  • Lim Suk Won;Jung Sung Won;Ahn Sung Ku;Kim Bora;Ryoo Hee Chang;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.205-232
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1 mg/ml UA or 0.1-1 mg/ml ONA after tape stripping, and TEWL (Transepidermal water loss) was measured . The recovery rate increased in those UA or ONA treated groups (0.1 mg/ml UA and 0.5 mg/ml ONA) at 6 h more than $20\%$ compared to vehicle treated group (p<0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from f week without TEWL alteration (p<0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent $(ONA{\geq}UA>Vehicle)$. LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Veh). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via $PPAR\;\alpha$. Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either $ONA\;(10{\mu}M)$ or UA $(10{\mu}M)$ for 24h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via $PPAR\;{\alpha}$. Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Enrichment of Short-Chain Ceramides and Free Fatty Acids in the Skin Epidermis, Liver, and Kidneys of db/db Mice, a Type 2 Diabetes Mellitus Model

  • Kim, Minjeong;Jeong, Haengdueng;Lee, Buhyun;Cho, Yejin;Yoon, Won Kee;Cho, Ahreum;Kwon, Guideock;Nam, Ki Taek;Ha, Hunjoo;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.457-465
    • /
    • 2019
  • Patients with diabetes mellitus (DM) often suffer from diverse skin disorders, which might be attributable to skin barrier dysfunction. To explore the role of lipid alterations in the epidermis in DM skin disorders, we quantitated 49 lipids (34 ceramides, 14 free fatty acids (FFAs), and cholesterol) in the skin epidermis, liver, and kidneys of db/db mice, a Type 2 DM model, using UPLC-MS/MS. The expression of genes involved in lipid synthesis was also evaluated. With the full establishment of hyperglycemia at the age of 20 weeks, remarkable lipid enrichment was noted in the skin of the db/db mice, especially at the epidermis and subcutaneous fat bed. Prominent increases in the ceramides and FFAs (>3 fold) with short or medium chains ($LXR{\alpha}/{\beta}$ and $PPAR{\gamma}$, nuclear receptors promoting lipid synthesis, lipid synthesis enzymes such as elongases 1, 4, and 6, and fatty acid synthase and stearoyl-CoA desaturase were highly expressed in the skin and livers of the db/db mice. Collectively, our study demonstrates an extensive alteration in the skin and systemic lipid profiles of db/db mice, which could contribute to the development of skin disorders in DM.