• Title/Summary/Keyword: skew symmetric

Search Result 69, Processing Time 0.024 seconds

Experiment with Axiom Propeller in Cavitation Tunnel

  • Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.296-303
    • /
    • 2014
  • The Axiom propeller is a unique 3 bladed propeller and it enables to generate the same amount of thrust going ahead as it does going astern because of its 's' type skew-symmetric blade section. A earlier variant of the design (Axiom I propeller) performed a low propeller efficiency, maximum 35 % efficiency, and further blade outline design was carried out to achieve a higher efficiency. The optimized new blade outline (Axiom II propeller) has more conventional Kaplan geometry shape than Axiom I propeller. Model tests of open water performance and propeller cavitation for both propellers were conducted at Emerson Cavitation Tunnel in order to compare their performances. Experiment results revealed that Axiom II propeller provides a maximum 53 % efficiency and provides better efficiency and cavitation performance over the Axiom I propeller under similar conditions.

RELIABILITY OF NUMERICAL SOLUTIONS OF THE G-EULER PROCESS

  • YU, DONG WON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.49-66
    • /
    • 2022
  • The G-Euler process has been proposed to overcome the difficulties of the calculation of the exponential function of the Jacobian. It is an explicit method that uses the exponential function of the scalar skew-symmetric matrix. We define the moving shapes of true solutions and the moving shapes of numerical solutions. It is discussed whether the moving shape of the numerical solution matches the moving shape of the true solution. The match rates of these two kinds of moving shapes are sequentially calculated by the G-Euler process without using the true solution. It is shown that the closer the minimum match rate is to 100%, the more closely the numerical solutions follow the true solutions to the end. The minimum match rate indicates the reliability of the numerical solution calculated by the G-Euler process. The graphs of the Lorenz system in Perko [1] are different from those drawn by the G-Euler process. By the way, there is no basis for claiming that the Perko's graphs are reliable.

Depth-Based rank test for multivariate two-sample scale problem

  • Digambar Tukaram Shirke;Swapnil Dattatray Khorate
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.227-244
    • /
    • 2023
  • In this paper, a depth-based nonparametric test for a multivariate two-sample scale problem is proposed. The proposed test statistic is based on the depth-induced ranks and is thus distribution-free. In this article, the depth values of data points of one sample are calculated with respect to the other sample or distribution and vice versa. A comprehensive simulation study is used to examine the performance of the proposed test for symmetric as well as skewed distributions. Comparison of the proposed test with the existing depth-based nonparametric tests is accomplished through empirical powers over different depth functions. The simulation study admits that the proposed test outperforms existing nonparametric depth-based tests for symmetric and skewed distributions. Finally, an actual life data set is used to demonstrate the applicability of the proposed test.

LARGE SCHRÖDER PATHS BY TYPES AND SYMMETRIC FUNCTIONS

  • An, Su Hyung;Eu, Sen-Peng;Kim, Sangwook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1229-1240
    • /
    • 2014
  • In this paper we provide three results involving large Schr$\ddot{o}$der paths. First, we enumerate the number of large Schr$\ddot{o}$der paths by type. Second, we prove that these numbers are the coefficients of a certain symmetric function defined on the staircase skew shape when expanded in elementary symmetric functions. Finally we define a symmetric function on a Fuss path associated with its low valleys and prove that when expanded in elementary symmetric functions the indices are running over the types of all Schr$\ddot{o}$der paths. These results extend their counterparts of Kreweras and Armstrong-Eu on Dyck paths respectively.

Control of Flexible Joint Cart based Inverted Pendulum using LQR and Fuzzy Logic System (LQR-퍼지논리제어기에 의한 2중 차량 구조 역진자 시스템의 제어)

  • Xu, Yue;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.268-274
    • /
    • 2013
  • Any new method for controlling a nonlinear system has widely been reported. An inverted pendulum system has typically been used as a target system for demonstrating its usefulness. In this paper, we propose an algorithm to control a flexible joint cart based inverted pendulum system. Two carts are connected with a spring and one is a driving cart and the other is no driving cart with a pole. We here present a system modeling and a good fuzzy logic based control algorithm. We also introduce LQR (Linar Quadratic Regulator) technique for reducing the number of control variables. By using this technique, the number of input variables for a fuzzy logic controller is become only two not six. So the computational complexity is largely reduced. Moreover, a two-input fuzzy logic controller has a control rule table with a skew-symmetric property. And it will lead the design of a single-input fuzzy logic controller. In order to demonstrate the usefulness of the proposed method and prove the superiority of the proposed method, some computer simulations are presented.

THE EXTREMAL RANKS AND INERTIAS OF THE LEAST SQUARES SOLUTIONS TO MATRIX EQUATION AX = B SUBJECT TO HERMITIAN CONSTRAINT

  • Dai, Lifang;Liang, Maolin
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.545-558
    • /
    • 2013
  • In this paper, the formulas for calculating the extremal ranks and inertias of the Hermitian least squares solutions to matrix equation AX = B are established. In particular, the necessary and sufficient conditions for the existences of the positive and nonnegative definite solutions to this matrix equation are given. Meanwhile, the least squares problem of the above matrix equation with Hermitian R-symmetric and R-skew symmetric constraints are also investigated.

THE TORSION OF THE CHARACTERISTIC CONNECTION

  • Kim, Hwajeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.599-608
    • /
    • 2012
  • In [2], [8], the author studied the characteristic connection as a good substitute for the Levi-Civita connection. In this paper, we consider the space $U(3)=(U(1){\times}U(1){\times}U(1))$ with an almost Hermitian structure which admits a characteristic connection and compute the characteristic connection concretely.

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials

  • Nejad, Mohammad Zamani;Hadi, Amin;Farajpour, Ali
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • In this paper, using consistent couple stress theory and Hamilton's principle, the free vibration analysis of Euler-Bernoulli nano-beams made of bi-directional functionally graded materials (BDFGMs) with small scale effects are investigated. To the best of the researchers' knowledge, in the literature, there is no study carried out into consistent couple-stress theory for free vibration analysis of BDFGM nanostructures with arbitrary functions. In addition, in order to obtain small scale effects, the consistent couple-stress theory is also applied. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in both axial and thickness directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of Hamilton principle. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of BDFG nano-beam. At the end, some numerical results are presented to study the effects of material length scale parameter, and inhomogeneity constant on natural frequency.

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF