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LARGE SCHRÖDER PATHS BY TYPES

AND SYMMETRIC FUNCTIONS

Su Hyung An, Sen-Peng Eu, and Sangwook Kim

Abstract. In this paper we provide three results involving large Schröder
paths. First, we enumerate the number of large Schröder paths by type.
Second, we prove that these numbers are the coefficients of a certain
symmetric function defined on the staircase skew shape when expanded
in elementary symmetric functions. Finally we define a symmetric func-
tion on a Fuss path associated with its low valleys and prove that when
expanded in elementary symmetric functions the indices are running over
the types of all Schröder paths. These results extend their counterparts

of Kreweras and Armstrong-Eu on Dyck paths respectively.

1. Introduction

A large Schröder path of length n is a lattice path from (0, 0) to (n, n) using
north steps N = (0, 1), diagonal steps D = (1, 1), and east steps E = (1, 0)
such that it does not rise above the diagonal y = x. For example, the path
EEDDNENNDEN is a large Schröder path of length 7. We denote the
set of large Schröder paths of length n by Rn and call rn := |Rn| a large

Schröder number. It is known [13] that the n-th large Schröder number is
given by rn = 1

n

∑n
k=0

(

n
k−1

)(

n
k

)

2k with r0 = 1. The initial terms are {rn}n≥0 =

{1, 2, 6, 22, 90, 394, . . .}n≥0. For simplicity, we will often omit “large” for the
rest of the paper.

A Dyck path of length n is a lattice path from (0, 0) to (n, n) using north
steps N and east steps E such that it does not rise above the diagonal y = x.
We denote the set of Dyck paths of length n by Dn. It is well known [13] that
the cardinality |Dn| is the Catalan number cn := 1

n+1

(

2n
n

)

, with initial terms

{cn}n≥0 = {1, 1, 2, 5, 14, 42, 132, . . .}n≥0.
The Dyck paths and the large Schröder paths are closely related by definition

and both are fundamental families of lattice paths. Hence it is natural to extend
results on Dyck paths to large Schröder paths (or vice versa). In literature
there have been several works along this line. For example, there is a notion
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of q, t-Schröder numbers parallel to that of the q, t-Catalan numbers [6, 7]. A
bijection between Dyck paths and the facets of cluster complex of type A can be
generalized to a bijection between Schröder paths and the faces of generalized
complex [5]. The interested readers are referred to [2, 4, 14] for more examples.

In this paper we obtain three new results on large Schröder paths, extending
their counterpart results on Dyck paths.

1.1. Enumeration by type

Given an integer partition λ, let |λ| denote the sum of the parts and ℓ(λ)
denote its number of nonzero parts. Also we setmλ := m1(λ)!m2(λ)!m3(λ)! · · · ,
where mi(λ) is the number of parts of λ equal to i. Note that mλ here is not
the monomial symmetric function.

For a Dyck path, its type is the integer partition formed by the length of the
adjacent east steps. For example, the Dyck pathEENENNEEENEENNNN
has type λ = (3, 2, 2, 1). The enumeration of Dyck paths counted by type is
done by Kreweras:

Theorem 1.1 (Kreweras [9]). The number of Dyck paths of length n with type

λ is
n(n− 1) · · · (n− ℓ(λ) + 2)

mλ

.

Similarly, for a large Schröder path, its type is the integer partition formed
by the number of the adjacent east steps. For example, the large Schröder path
EENDENNEENNDEN has type λ = (2, 2, 1, 1). Our first main result is to
count the number of large Schröder paths by type:

Theorem 1.2 (Theorem 3.2). The number Sch(n, λ) of large Schröder paths

of length n with type λ is

Sch(n, λ) =

(

n+ 1

|λ|+ 1

)

n(n− 1) · · · (n− ℓ(λ) + 2)

mλ

.

1.2. Partial horizontal strip

Let µ = (µ1, µ2, . . . ) and ν = (ν1, ν2, . . . ) be integer partitions such that µi ≥
νi for all i. The skew shape µ/ν is the setwise difference of Young diagrams. A
partial horizontal strip in the shape µ/ν is a set of boxes, at most one in each
column, such that the height of the boxes is weakly increasing to the right.
The collection of numbers of boxes in each row of a partial horizontal strip σ
form a partition, called the type of σ. By an abuse of notation, we will also
denote this type by σ if there is no confusion. A partial horizontal strip is
right-aligned if the result of adding a box to the right of any given box is not
a partial horizontal strip.

For a partition λ, let hλ be the homogeneous symmetric function of type λ
on variables x1, . . . , xk. Let λ ⊢≤ n mean that λ ⊢ n′ for some 0 ≤ n′ ≤ n.
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It turns out that when µ/ν = nn/(n − 1, . . . , 2, 1) is a staircase shape, the
sum of all homogeneous symmetric functions indexed by right aligned partial
horizontal strips has coefficients related to Theorem 1.1:

Theorem 1.3 (Armstrong and Eu [1]). We have

∑

σ

hσ =
∑

λ⊢≤n

n!(n+ 1− |λ|)

mλ(n+ 1− ℓ(λ))
hλ,

where the sum on the left hand side is over all right aligned partial horizontal

strips σ contained in the staircase skew shape nn/(n− 1, . . . , 2, 1).

The top homogeneous part of
∑

σ hσ is the parking function symmetric func-

tion, introduced by Haiman [8]. The coefficient of hλ in the expansion of this
function in homogeneous symmetric function bases is the number of Dyck paths
of type λ [12].

Let eλ be the elementary symmetric function of type λ. Our second main
result is the Schröder version of the above. This can be considered as an ele-
mentary symmetric function analogue of parking function symmetric functions.
In this version the partial horizontal strips need not to be right aligned and the
summands are elementary symmetric functions.

Theorem 1.4 (Theorem 4.2). We have

∑

σ

eσ =
∑

λ⊢n

(

n+ 1

|λ|+ 1

)

n(n− 1) · · · (n− ℓ+ 2)

mλ

eλ,

where the sum on the left is over all partial horizontal strips σ contained in the

staircase skew shape nn/(n− 1, . . . , 2, 1).

1.3. Low valleys on Fuss-Catalan paths

The notion of Dyck paths can be generalized to Fuss-Catalan paths [11].
For any integer k ≥ 1, a k-Fuss-Catalan path of length n is a lattice path from
(0, 0) to (n, kn), using east steps E = (1, 0) and north steps N = (0, 1) and
staying weakly below the diagonal y = kx. An east step is on level h if it falls
on y = h, and an low east step is an east step which does not touch the line

y = kx. Let C
(k)
n be the set of k-Fuss-Catalan paths of length n. It is known

the cardinality is |C
(k)
n | = 1

kn+1

(

(k+1)n
n

)

, a Fuss-Catalan number.

Let P ∈ C
(k)
n . For each low east step of P on level h, we associate a weight

xi where i ≡ h (mod k) and 1 ≤ i ≤ k. The weight of P , denoted by we(P ), is
the monomial defined as the product of all weights of its low east steps. Define

H(k)
n (x) :=

∑

P∈C
(k)
n

we(P )

to be the sum of monomials corresponding to all k-Fuss-Catalan paths of length
n.
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A reduce type λ′(P ) of a Dyck path P is the partition obtained by deleting
the part of λ(P ) containing the first east step. For example, the Dyck path
P = EENENNEEENEENNNN has the reduced type λ′(P ) = (3, 2, 1).

The following result reveals the relation between H
(k)
n (x) and the reduced type

of Dyck paths.

Theorem 1.5 (Armstrong and Eu [1]). Let k and n be positive integers. Then

H(k)
n (x) =

∑

P∈Dn

hλ′(P ),

where h is the homogeneous symmetric function on variables x1, x2, . . . , xk.

A valley of a Fuss-Catalan path is an east step followed by a north step. A
valley is a low valley if the east step does not touch y = kx and is of level h if
the east step falls on y = h.

Now we put weights on low valleys instead of low east steps. For each low
valley of a k-Fuss-Catalan path P on level h, we associate a weight xi where
i ≡ h (mod k) and 1 ≤ i ≤ k, and the weight of P , denoted by wv(P ), is the
monomial defined by the product of all its weights of the low valleys. Define

E(k)
n (x) :=

∑

P∈C
(k)
n

wv(P )

to be the sum of monomials corresponding to all k-Fuss-Catalan paths of length
n.

Our third main result shows that E
(k)
n+1(x) is a symmetric function and, if

expanded in elementary symmetric functions, has indices running over types
of all the large Schröder paths of length n. This is the Schröder version of
Theorem 1.5.

Theorem 1.6 (Theorem 5.1). Let k and n be positive integers. Then

E
(k)
n+1(x) =

∑

P∈Rn

eλ(P ),

where e is the elementary symmetric function on variables x1, x2, . . . , xk.

The rest of the paper is organized as follows. In Section 2 we will introduce
the structure “sparse noncrossing partitions” as a key tool, which is the coun-
terpart of noncrossing partitions used for proving results associated to Dyck
paths. The proofs of Theorem 1.2, Theorem 1.4, and Theorem 1.6 are put in
Section 3, Section 4, and Section 5, respectively.

2. Schröder paths and sparse noncrossing partitions

In this sections, we define sparse noncrossing partitions and give a bijection
between Schröder paths and sparse noncrossing partitions which preserves their
types.
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A partition P of a set [n] is a collection B1, B2, . . . , Bℓ of nonempty disjoint
subsets of [n] whose union is [n]. Bi’s are called blocks. If B1, B2, . . . , Bℓ

are listed in the increasing order of their least elements, the partition P can
be written in the canonical sequential form P = a1a2 · · · an where i ∈ Bai

.
The type of a noncrossing partition is the integer partition given by its block
sizes. For a noncrossing partition P = ({1, 7, 9}, {2}, {3}, {4, 6}, {5}, {8}), its
canonical sequential form is 123454161 and its type is (3, 2, 1, 1, 1, 1).

The standard representation of a partition P is a graph on the vertex set
[n] such that a block B = {b1, b2, . . . , bk} corresponds to a path (b1, b2, . . . , bk).
A pair (i, j) with i < j which corresponds to an edge in the standard repre-
sentation of P is called an arc. An arc (i, j) is called a nesting arc if there is
another arc (m,n) such that i < m < n < j. The arc type of a partition P is
the integer partition given by length of paths in the standard representation of
P . If the type of a partition P is (λ1, λ2, . . . , λℓ, 1, . . . , 1) with λℓ ≥ 2, then its
arc type is (λ1 − 1, λ2 − 1, . . . , λℓ − 1).

A set partition is called sparse if no two consecutive integers are in the same
block. A partition is noncrossing if a, c ∈ Bi and b, d ∈ Bj for no elements
a < b < c < d and i 6= j. The partition P listed above is sparse and noncrossing.

Proposition 2.1. There is a bijection between the set of all Schröder paths of

length n with type λ and the set of all sparse noncrossing partitions of [n+|λ|+1]
with arc type λ.

Proof. We trace a Schröder path from left to right and begin with the sequence
1. For k consecutive east steps of height j − 1,

(1) replace each number i(> j) with i+ k, and
(2) replace j with j, j + 1, j, j + 2, j, . . . , j + k, j.

For a diagonal step of initial height j − 1,

(1) if the diagonal step is on the main diagonal, add j + 1 at the end.
(2) if the diagonal step is not on the main diagonal, replace each number

i(> j + 1) with i+ 1, and replace j + 1 with j + 1, j + 2.

For a north step, do nothing. Then the resulting sequence gives a noncrossing
set partition of [n+ |λ|+ 1]. An example is shown in Figure 1.

4 11 2

j = 1 j = 1

1 4 1 1 2 3 1 5 1

j = 2 j = 4

1 2 3 1 6 1 2 3 4 5 4 1 6 1

j = 6 j = 7

1 2 3 4 5 4 1 6 1 71 42 1 3 1 3 7875 4

Figure 1. From a Schröder path to a sparse noncrossing partition
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Conversely, we first search the numbers which appear more than once in
the canonical sequential form of the given noncrossing partition. If j appears
k(> 1) times, put k− 1 consecutive east steps on height j− 1. Next, we search
for consecutive pairs (i, j) such that j does not appear before i and i does not
appear after j. For such a consecutive pair (i, j),

(1) if there is k satisfying k, . . . , i, j, . . . , k, then put a diagonal step with
beginning height i− 2 between the rightmost east step whose height is
lower than i− 1 and the leftmost east step whose height is higher than
i− 2. If it is necessary, we shift east steps to the right.

(2) if there is no such k, then put a diagonal step with beginning height
j − 2 in the same way as above.

Finally, we insert north steps in appropriate positions. Figure 2 shows an
example.

i = 1, j = 7

2 3 5 6 8 1 5 144 6 1 7 8 7 1 2 5 14 6 1 7 8 7 1 2 3 5 144 6 8 7713 42 31 4 4 1 1 7 7

j = 1, 4, 7

East steps Diagonal step

i = 2, j = 3

Diagonal step

i = 3, j = 4

Diagonal step

Figure 2. From a sparse noncrossing partition to a Schröder path

�

3. Enumeration of Schröder family by type

In this section, we give an explicit formula for the number of Schröder paths
of given length and type.

The following lemma counts the number of noncrossing partitions without
singleton blocks with given arc type.

Lemma 3.1. The number of noncrossing partitions of [|λ| + ℓ] with arc type

λ = (λ1, . . . , λℓ) and k arcs having nesting is
(

|λ|

k

)(

ℓ

k + 1

)

(ℓ− 1)!

mλ

.

Proof. First, we assume that every part of λ is distinct. Let B1, . . . , Bℓ are the
blocks with |Bi| = λi+1 and αi1, αi2, . . . , αiλi

be the arcs in the block Bi from
left to right. For a set A of k arcs, let NCA be the set of noncrossing partitions
such that precisely the arcs in A have nesting. Let A0 = {α11, α21, . . . , αk1}.
We claim that there is a one-to-one correspondence between NCA and NCA0

for any set A of k arcs.
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Without loss of generality, we may assume that nesting arcs are to the left
of nonnesting arcs in the same block. This can be done by successively moving
everything under a nesting arc to the leftmost nonnesting arc of the same block.

Let β be the rightmost nesting arc contained in the smallest block with more
than one nesting arcs and γ be the first arc of the largest block without nesting
arcs. There are two cases to consider:

Case 1: (when γ is not inside β) In this case, we move everything under β to
under γ.

Case 2: (when γ is inside β) In this case, there is a sequence of arcs between β
and γ. Label those arcs so that β0 = β, βn = γ, and βj contains βj+1.
Let Cj be the block containing βj together with all the blocks inside
this block except the ones inside βj . Let Dj be the blocks inside βj−1

and on the left of Cj and Ej be the blocks inside βj−1 and on the right
of Cj . Note that Cj , Dj , or Ej may consist of more than one block.

Reorder the blocks in the following way:
(a) Put the blocks C0 in the innermost position.
(b) Put the blocks D1 on the left of the block C0 and the blocks E1

on the right of C0. Then put the blocks C1 so that β1 contains
the blocks D1, C0, and E1.

(c) Suppose we already reorder the blocks C0, . . . , Cj−1, D1, . . . ,
Dj−1, E1, . . . , Ej−1. Put the blocks Dj on the left of the blocks
Cj−1 and Ej on the right of Cj−1. Then put the blocks Cj so
that βj contains the blocks C0, . . . , Cj−1, D1, . . . , Dj, E1, . . . , Ej .

(d) Put all the remaining blocks in the same position as they were.
After finishing the reordering, the order of arc (from the outside) is
βn, . . . , β1, β0. Moreover, the arc β does not have the nesting while the
arc γ has a nesting.

After finishing this algorithm, we get a noncrossing partition whose set of
nesting arcs is (A\{β})∪{γ}. Continuing this algorithm provides a noncrossing
partition in NCA0 . As this algorithm can be easily reversed, there is a one-to-
one correspondence between NCA and NCA0 .

Replacing left endpoints of each ai1 with left parentheses and right end-
points of ai1 with right parentheses and removing all the other arcs will give
an expression containing ℓ pairs of matching parentheses and exactly ℓ − k
pairs of consecutive parentheses (). Since the number of such expressions is the

Narayana number 1
ℓ

(

ℓ
ℓ−k

)(

ℓ
ℓ−k−1

)

(see [3]) and k!(ℓ− k)! noncrossing partitions
in NCA0 give the same expressions, there are

1

ℓ

(

ℓ

ℓ− k

)(

ℓ

ℓ− k − 1

)

k!(ℓ− k)! =

(

ℓ

k + 1

)

(ℓ− 1)!

noncrossing partitions in NCA0 .

Since there are
(

|λ|
k

)

ways to choose k arcs which have nesting, the number
of noncrossing partitions of [|λ| + ℓ] with arc type λ when every part of λ is
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0 E E E

D E E E

1 2

(Before)

(After)

C C CD

D2 C C C0 1 2

α

22 2 1 1D 10 0 0

α

0

β0
β1

β2

β0β1β2

D1D

Figure 3. Before and after reordering the blocks when γ = β2

is inside β = β0

distinct is
(

|λ|

k

)(

ℓ

k + 1

)

(ℓ− 1)!.

Because interchanging the elements of the blocks of the same size does not
lead to a different partition, we must divide by mλ to get the desired result. �

Theorem 3.2. The number of all Schröder paths of length n with type λ =
(λ1, . . . , λℓ) is

(ℓ− 1)!

mλ

(

n+ 1

|λ|+ 1

)(

n

ℓ− 1

)

=

(

n+ 1

|λ|+ 1

)

n(n− 1) · · · (n− ℓ+ 2)

mλ

.

Proof. By Proposition 2.1, Sch(n, λ) is the same as the number of all sparse
noncrossing partitions of [n+ |λ|+ 1] with arc type λ = (λ1, λ2, . . . , λℓ). Note
that the number of singleton blocks of noncrossing partitions of [n + |λ| + 1]
with arc type λ is n− ℓ+ 1. Lemma 3.1 implies that there are

(

|λ|

k

)(

ℓ

k + 1

)

(ℓ− 1)!

mλ

noncrossing partitions of [|λ| + ℓ] with arc type λ with k arcs having nesting.
In order to get a sparse set partitions, we first insert one singleton block under

each of |λ| − k arcs without nesting. Then there are
(( |λ|+ℓ+1

n−ℓ+1−(|λ|−k)

))

ways to

insert remaining singleton blocks to get a sparse noncrossing set partition of
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[n+ |λ|+ 1] with arc type λ. Therefore we have

Sch(n, λ) =

ℓ−1
∑

k=0

(

|λ|

k

)(

ℓ

k + 1

)

(ℓ− 1)!

mλ

((

|λ|+ ℓ+ 1

n− ℓ+ 1− (|λ| − k)

))

=
(ℓ − 1)!

mλ

ℓ−1
∑

k=0

(

|λ|

k

)(

ℓ

k + 1

)(

n+ 1 + k

|λ|+ ℓ

)

=
(ℓ − 1)!

mλ

(

n+ 1

|λ|+ 1

)(

n

ℓ− 1

)

.

The last equality is obtained from Nanjundiah’s form of Saalschutz’s theo-
rem [10]. �

For λ ⊢ n, Theorem 3.2 implies Theorem 1.1.

Corollary 3.3. The number of sparse noncrossing partitions of [n] with type

µ = (µ1, . . . , µℓ) is

(ℓ− 1)!

mµ

(

ℓ

n− ℓ+ 1

)

.

Proof. If m1(µ) = k, then the corresponding arc type is µ̄ = (µ1 − 1, µ2 −
1, . . . , µℓ−k − 1) and the length of the corresponding Schröder path is ℓ − 1.
Since mµ̄ = mµ/k!, the result follows from Theorem 3.2. �

4. Partial horizontal strips and elementary symmetric functions

In this section, we give results related to elementary symmetric functions.
In order to prove Theorem 1.4, we give the following which describes the

relationship between partial horizontal strips and Schröder paths.

Proposition 4.1. There is a bijection from the set of all Schröder paths of

length n to the set of all partial horizontal strips in the skew shape nn/(n −
1, . . . , 2, 1) which preserves types.

Proof. We trace a Schröder path from left to right. When there is an east step
(i− 1, j − 1) → (i, j − 1), we put a box on jth row of ith column. When there
is a diagonal step (i, j) → (i + 1, j + 1), we take i − j columns of rightmost
chosen boxes and shift them to the right by one.

Conversely, we trace a partial horizontal strip from right to left. When there
is a box on jth row of ith column, we put an east step (i−1, j−1) → (i, j−1).
When there is no box on ith column, count how many east steps below ith row.
If there are k east steps below ith row, put a diagonal step (i− 1, i+ k− 1) →
(i, i+ k) and shift east steps below ith row to the left. �

The following theorem immediately follows from Proposition 3.2 and Propo-
sition 4.1.
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Figure 4. From a Schröder path to a partial horizontal strip

Figure 5. From a partial horizontal strip to a Schröder path

Theorem 4.2. We have
∑

σ

eσ =
∑

λ⊢n

(

n+ 1

|λ|+ 1

)

n(n− 1) · · · (n− ℓ+ 2)

mλ

eλ,

where the sum on the left is over all partial horizontal strips σ contained in the

staircase skew shape nn/(n− 1, . . . , 2, 1).

5. Fuss-Catalan paths and elementary symmetric functions

This section provides the proof of Theorem 1.6.

Theorem 5.1. Let k and n be positive integers. Then

E
(k)
n+1(x) =

∑

P∈Rn

eλ(P ),

where e is the elementary symmetric function on variables x1, x2, . . . , xk.

Proof. For each k-Fuss-Catalan path of length n, we associate a partial hor-
izontal strip σ in nn \ (n − 1, . . . , 2, 1) and a monomial in eλ(σ). Let P be

a Fuss-Catalan path in C
(k)
n . For a low valley beginning at (i, jk + m) with

0 ≤ m < k, we choose a box in ith column and (j + 1)st row in the skew
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shape nn \ (n− 1, . . . , 2, 1). Then the collection of chosen boxes forms a partial
horizontal strip σ and the weight wv(P ) is a monomial in eλ(σ).

On the other hand, for each partial horizontal strip σ and a monomial in
eλ(P ), we associate a k-Fuss-Catalan path of length n. Let σ be a partial
horizontal strip in nn \ (n − 1, . . . , 2, 1) and m1m2 · · ·mn be a monomial in
eλ(P ). We may assume that mj is a monomial in eλj

where λj is the number
of boxes in the jth row of σ. If mj = xi1 · · ·xij , then put valleys in the
level (j − 1)k + i1, . . . , (j − 1)k + ij whose x-coordinates are determined by
the position of boxes in the jth row of σ. Since the positions of low valleys
completely determine the Fuss-Catalan paths, we get a Fuss-Catalan path P

in C
(k)
n and the weight wv(P ) is m1m2 · · ·mn. �
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