• 제목/요약/키워드: size structure

검색결과 7,579건 처리시간 0.034초

도공층의 공극성이 인쇄후 잉크의 잔류 거동에 미치는 영향 - 안료와 잉크의 효과 - (Investigation on Relationship Between Pore Structure of Coating Layer and Ink Residual Behavior - Focused on the Effect of Pigments and Inks -)

  • 김병수;정현채;박종열
    • 펄프종이기술
    • /
    • 제34권3호
    • /
    • pp.53-58
    • /
    • 2002
  • This paper was performed to investigate the effect of pore structure on ink residual behavior. To prepare different coating structures as substrates against inks, fine, medium and coarse calcium carbonate were used in the coating color. It is well known ink properties can affect to print qualities. After printing on the coated paper, ink layer can consider as third structure addition to paper and coating layer. To compare effect of ink properties on the surface structure and print qualities, several properties of ink were also adopted as raw material. Particle size of pigment effect on gloss evaluation of coated paper increased with calendering. It was shown that ink transfer rate increased as surface of the sample was smooth. The ink contained low viscosity resin evaluated more print gloss. Finer pigment particle size, smaller pore size and higher porosity. Pore volume of coated paper was slightly decreased with printing as the coating was prepared with the finest particle size. However, it founded that ink resin could not affect on pore volume and distribution of printed paper

최적화 기법을 이용한 3차원 트러스 구조물의 설계자동화 (Design Automatization of Space Truss Structure Using Optimizations Technique)

  • 최은규;임기식;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.81-90
    • /
    • 1993
  • The optimum design of a structure requires the determination of the economical member size and shape of the structure which satisfies the design condition and function. In this study, the process of design automatization of three-dimensional truss structure introduces the optimization technique tests its application in the design automatization, proposes its application method and applies the example structure of the parabolic antenna truss. Using the Formex Algebra of configuration function, the structure's mesh-generation is automatized. By using the program developed in this study, the input member array, member size and load condition designer can generate the input data file for the structure analysis and optimum design. This study is aimed at the development of a design automatization system that search for tile optimum value of a structure design by observing the structure's sensitivity from the modification of member array and member property.

  • PDF

데이터와 인공신경망 능력 계산 (Calculating Data and Artificial Neural Network Capability)

  • 이덕균;박지은
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.49-57
    • /
    • 2022
  • 최근 인공지능의 다양한 활용은 기계학습의 딥 인공신경망 구조를 통해 가능해졌으며 인간과 같은 능력을 보여주고 있다. 불행하게도 딥 구조의 인공신경망은 아직 정확한 해석이 이루어지고 있지 못하고 있다. 이러한 부분은 인공지능에 대한 불안감과 거부감으로 작용하고 있다. 우리는 이러한 문제 중에서 인공신경망의 능력 부분을 해결한다. 인공신경망 구조의 크기를 계산하고, 그 인공신경망이 처리할 수 있는 데이터의 크기를 계산해 본다. 계산의 방법은 수학에서 쓰이는 군의 방법을 사용하여 데이터와 인공신경망의 크기를 군의 구조와 크기를 알 수 있는 Order를 이용하여 계산한다. 이를 통하여 인공신경망의 능력을 알 수 있으며, 인공지능에 대한 불안감을 해소할 수 있다. 수치적 실험을 통하여 데이터의 크기와 딥 인공신경망을 계산하고 이를 검증한다.

Low-Complexity Multi-size Cyclic-Shifter for QC-LDPC Codes

  • Kang, Hyeong-Ju;Yang, Byung-Do
    • ETRI Journal
    • /
    • 제39권3호
    • /
    • pp.319-325
    • /
    • 2017
  • The decoding process of a quasi-cyclic low-density parity check code requires a unique type of rotator. These rotators, called multi-size cyclic-shifters (MSCSs), rotate input data with various sizes, where the size is the amount of data to be rotated. This paper proposes a low-complexity MSCS structure for the case when the sizes have a nontrivial common divisor. By combining the strong points of two previous structures, the proposed structure achieves the smallest area. The experimental results show that the area reduction was more than 14.7% when the proposed structure was applied to IEEE 802.16e as an example.

긴장 및 무긴장 상태에서 열처리한 PP 필라멘트의 구조 및 역학적 성질에 관한 연구 (A Study On the Structure and Mechanical Properties of tensioned and non-tensioned annealed PP filaments)

  • 이은우
    • 한국산업융합학회 논문집
    • /
    • 제4권4호
    • /
    • pp.413-418
    • /
    • 2001
  • The change of crystalline structure and mechanical properties of drawn PP filaments which was treated by tensioned and non-tensioned annealing was investigated. Measurements were carried out with XRD for crystallite size, density gradient tube for crystallinity. and UTM for mechanical properties. Tensioend and non-tensioned annealing were carried out $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$: for 10min., 30min., 60min, in oil bath. It was found that the crystallinity and crystallite size of (110) plane of samples were increased with increasing of annealed temperature and time. Also crystallinity and crystallite size of samples which was tensioned annealing were larger than those of non-tensioned annealed samples. Initial modulus and tensile strength of tensioned annealed samples were higher than non-tensioned annealed samples, But elongation of tensioned annealed samples was lower than non-tensioned annealed samples.

  • PDF

Bordered Pit Structure Observed by FE-SEM in Main Wood Species of Pinaceae Grown in Korea

  • Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • 한국가구학회지
    • /
    • 제17권3호
    • /
    • pp.23-28
    • /
    • 2006
  • An experiment was conducted to investigate the pit structure of four kind of pine wood species grown in Korea. Torus diameter, margo width, margo lattice size, diameter of pit aperture and pit border width were taken under consideration for explaining the pit structure difference among Pinus densiflora, Pinus rigida, Pinus koraiensis and Larix kaempferi. Torus diameter was found highest in Pinus rigida and the lowest in Pinus densiflora. Margo lattice size varied with torus diameter. Wider torus lowered the margo lattice size. Highest margo width was found in Pinus rigida while the lowest one was found in Pinus koraiensis. Pit aperture diameter was found highest in Pinus densiflora and lowest in Pinus koraiensis. In Pinus rigida, pit border was found the highest and the lowest was found in Larix kaempferi. Pit aperture diameter and pit border were increased gradually from pith to bark while there was a decreasing trend in the margo lattice size measuring from the pith to bark.

  • PDF

SLS형 쾌속조형기를 이용한 미세구조 몰드 제작 (Fabrication of micro structure mold using SLS Rapid Prototyping)

  • 유홍진;김동학;장석원;김태완
    • 한국산학기술학회논문지
    • /
    • 제5권2호
    • /
    • pp.186-190
    • /
    • 2004
  • Nano size 몰드의 제작은 X-ray lithography 방법을 이용하여 몰드를 제작하고, micro size의 경우 Deep UV lithography 방법을 이용하여 몰드를 제작하고 있다. 본 연구에서는 SLS(Selective Laser Sintering)형 RP(Rapid Prototyping System)을 이용하여 미세구조 몰드를 제작하였으며, 패턴의 깊이는 400 ㎛까지 구현하였다. 제작된 몰드의 강도와 내열성을 높이기 위하여 전해도금을 이용하여 몰드의 표면에 Ni를 300 ㎛생성 시켰다.

  • PDF

표면 요철구조를 적용한 나노 다공성 Ag 금속박막의 SERS 응답 특성 개선 (Improvement of Surface-enhanced Raman Spectroscopy Response Characteristics of Nanoporous Ag Metal Thin Film with Surface Texture Structures)

  • 김형주;김봉환;이동인;이봉희;조찬섭
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.255-260
    • /
    • 2020
  • In this study, we developed a method of improving the surface-enhanced Raman spectroscopy (SERS) response characteristics by depositing a nanoporous Ag metal thin film through cluster source sputtering after forming a pyramidal texture structure on the Si substrate surface. A reactive ion etching (RIE) system with a metal mesh inside the system was used to form a pyramidal texture structure on the Si surface without following a complicated photolithography process, unlike in case of the conventional RIE system. The size of the texture structure increased with the RIE process time. However, after a process time of 60 min, the size of the structure did not increase but tended to saturate. When the RF power increased from 200 to 250 W, the size of the pyramidal texture structure increased from 0.45 to 0.8 ㎛. The SERS response characteristics were measured by depositing approximately 1.5 ㎛ of nanoporous Ag metal thin film through cluster sputtering on the formed texture structure by varying the RIE process conditions. The Raman signal strength of the nanoporous Ag metal thin film deposited on the Si substrate with the texture structure was higher than that deposited on the general silicon substrate by up to 19%. The Raman response characteristics were influenced by the pyramid size and the number of pyramids per unit area but appeared to be influenced more by the number of pyramids per unit area. Therefore, further studies are required in this regard.

구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조 (Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding)

  • 정현덕;김세기
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.502-507
    • /
    • 2019
  • Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Fabrication of Metal Nanohoneycomb Structures and Their Tribological Behavior

  • Kim, Sung-Han;Lee, Sang-Min;Choi, Duk-Hyun;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.101-110
    • /
    • 2008
  • Metal nanohoneycomb structures were fabricated by E-beam evaporation and a two-step anodization process in phosphoric acid. Their tribological properties of adhesion and friction were investigated by AFM in relation to the pore size of the nanohoneycomb structures. Variations of the adhesive force are not found with pore size, but formation of the pore greatly reduces the adhesive force compared to the absence of pore structure. The coefficient of friction increased nonlinearly with pore size, due to surface undulation around the pore. Tribological properties do not differ greatly between the original nanohoneycomb structure and the metal nanohoneycomb structure.