DOI QR코드

DOI QR Code

Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding

구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조

  • Jeong, Hyeondeok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Seiki (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 정현덕 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김세기 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2019.11.28
  • Accepted : 2019.12.23
  • Published : 2019.12.28

Abstract

Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Keywords

References

  1. Z. Gu and B. Deng: Environ. Eng. Sci., 24 (2006) 113. https://doi.org/10.1089/ees.2007.24.113
  2. Q. Wang, X.-y. Liang, R. Zhang, C.-j. Liu, X.-j. Liu, W.-m. Qiao, L. Zhan and L.-c. Ling: New Carbon Mater., 24 (2009) 55. https://doi.org/10.1016/S1872-5805(08)60036-0
  3. J. Yang, X.-y. Zhou, J. Li, Y.-l. Zou and J.-j. Tang: Mater. Chem. Phys., 135 (2012) 445. https://doi.org/10.1016/j.matchemphys.2012.05.006
  4. J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel: ACS Appl. Mater. Interfaces, 5 (2013) 3160. https://doi.org/10.1021/am400059t
  5. J. Wang, I. Senkovska, S. Kaskel and Q. Liu: Carbon, 75 (2014) 372. https://doi.org/10.1016/j.carbon.2014.04.016
  6. M. Toyoda, N. Iwashita and M. Inagaki: Chem. Phys. Carbon, 30 (2007) 177. https://doi.org/10.1201/9781420042993.ch4
  7. W. Ford: USA, 3121050 (1964).
  8. X. Wang, J. Zhong, Y. Wang and M. Yu: Carbon, 44 (2006) 1560. https://doi.org/10.1016/j.carbon.2005.12.025
  9. R. Luo, Y. Ni, J. Li, C. Yang and S. Wang: Mater. Sci. Eng., A, 528 (2011) 2023. https://doi.org/10.1016/j.msea.2010.10.106
  10. M. Inagaki, T. Morishita, A. Kuno, T. Kito, M. Hirano, T. Suwa and K. Kusakawa: Carbon, 42 (2004) 497. https://doi.org/10.1016/j.carbon.2003.12.080
  11. P. Zhou and Q.-L. Chen: J. Anal. Appl. Pyrolysis, 122 (2016) 370. https://doi.org/10.1016/j.jaap.2016.09.001
  12. K. Prabhakaran, P. K. Singh, N. M. Gokhale and S. C. Sharma: J. Mater. Sci., 42 (2007) 3894. https://doi.org/10.1007/s10853-006-0481-1
  13. R. Wang, W. Li and S. Liu: J. Mater. Sci., 47 (2012) 1977. https://doi.org/10.1007/s10853-011-5993-7
  14. C. H. Reisz and S. Susman: Synthetic Binders for Carbon and Graphite, Sam Stuart (Ed.), Carbon: Proceedings of the Fourth Conference, Proc. Buffalo, NY (1959) 609.
  15. C. Zou, D. Wu, M. Li, Q. Zeng, F. Xu, Z. Huang and R. Fu: J. Mater. Chem., 20 (2010) 731. https://doi.org/10.1039/B917960G
  16. M. Inagaki, T. Morishita, A. Kuno, T. Kito, M. Hirano, T. Suwa and K. Kusakawa: Carbon, 42 (2004) 497 https://doi.org/10.1016/j.carbon.2003.12.080
  17. R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec: Adv. Mater., 13 (2001) 677. https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  18. J. Lee, J. Kim and T. Hyeon: Chem. Commun., 3 (2003) 1138.
  19. H. Teng and S. C. Wang: Ind. Eng. Chem. Res., 39 (2000) 673. https://doi.org/10.1021/ie990473i
  20. M. Wu, Q. Zha, J. Qiu, X. Han, Y. Guo, Z. Li, A. Yuan and X. Sun: Fuel, 84 (2005) 1992. https://doi.org/10.1016/j.fuel.2005.03.008
  21. W. Chen and L. Yan: Nanoscale, 3 (2011) 3132. https://doi.org/10.1039/c1nr10355e
  22. ISO 23145-1, Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of bulk density of ceramic powders - Part 1: Tap Density, (2007).
  23. H. Y. Sohn and C. Moreland: Can. J. Chem. Eng., 46 (1968) 162. https://doi.org/10.1002/cjce.5450460305
  24. K. W. Desmond and E. R. Weeks: Phys. Rev. E, 90 (2014) 022204. https://doi.org/10.1103/PhysRevE.90.022204
  25. M. Clusel, E. I. Corwin, A. O. N. Siemens and J. Brujic: Nature, 460 (2009) 611. https://doi.org/10.1038/nature08158
  26. P. Dhar, G. Khurana, H. A. Raman and V. Jaiswal: Langmuir, 35 (2019) 2326. https://doi.org/10.1021/acs.langmuir.8b03932