• Title/Summary/Keyword: size dependent behavior

Search Result 254, Processing Time 0.032 seconds

Thermal and Mechanical Properties of ZrB2-SiC Ceramics Fabricated by Hot Pressing with Change in Ratio of Submicron to Nano Size of SiC (서브마이크론/나노 크기의 SiC 비율변화에 따른 ZrB2-SiC 세라믹스의 열적, 기계적 특성)

  • Kim, Seongwon;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.410-415
    • /
    • 2013
  • $ZrB_2$-SiC ceramics are fabricated via hot pressing with different ratios of submicron or nano-sized SiC in a $ZrB_2$-20 vol%SiC system, in order to examine the effect of the SiC size ratio on the microstructures and physical properties, such as thermal conductivity, hardness, and flexural strength, of $ZrB_2$-SiC ceramics. Five different $ZrB_2$-SiC ceramics ($ZrB_2$-20 vol%[(1-x)SiC + xnanoSiC] where x = 0.0, 0.2, 0.5, 0.8, 1.0) are prepared in this study. The mean SiC particle sizes in the sintered bodies are highly dependent on the ratio of nano-sized SiC. The thermal conductivities of the $ZrB_2$-SiC ceramics increase with the ratio of nano-sized SiC, which is consistent with the percolation behavior. In addition, the $ZrB_2$-SiC ceramics with smaller mean SiC particle sizes exhibit enhanced mechanical properties, such as hardness and flexural strength, which can be explained using the Hall-Petch relation.

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

Comparison of Nutritional Knowledge, Dietary Habits, and Practice Level of Eating Behavior Guidelines Between Part-Time Working and Non-Working Adolescents Attending a Vocational High School in Yongin, Gyeonggi-Do (용인지역 일부 실업계 고등학생의 아르바이트 여부에 따른 영양지식, 식습관, 식생활 지침 실천도 비교)

  • Bae, Sung-Joo;Lee, Seung-Min;Ahn, Hong-Seok
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • The purpose of this study was to investigate nutritional knowledge, practice of eating behavior guidelines, and problematic dietary habits in working high school students in comparison with non-working high school students. A survey questionnaire was formulated to obtain information on demographic variables, body size, part-time jobs, nutritional knowledge, practice of eating behavior guidelines, and dietary habits. The developed questionnaire was given out to 515 students attending a vocational high school in Yongin, Gyeonggi-Do. Those who had been working 5 hours or more per day for at least a month at the time of survey administration were defined as working students for this study. Proportions of working students were similar between male and female students (i.e. 49.5% for male, 50.5% for female). No significant difference was found in scores of nutritional knowledge between working ($8.43{\pm}2.29$) and non-working students ($8.60{\pm}2.19$). However, some dietary habits were found to be dependent on working status. While approximately 43% of non-working students reported skipping a meal, about 57% of working students did so (p<0.01). The proportion of students with any drinking experience was significantly higher among working students (92%) compared to non-working students (80%) (p<0.001). Working students were found to drink alcoholic beverages more often than non-working students (p<0.001). The mean score of practice of eating behavior guidelines was lower in working students than non-working students. The magnitude of this difference was modest ($51.33{\pm}0.63$ in working students, $53.40{\pm}0.51$ in non-working students), but reached statistical significance (p<0.01). Based on the findings from this study, it is suggested that specific behavior-oriented messages to improve certain problematic dietary habits need to be directed toward working high school students.

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

Regional Characteristics of Commodity Sales by Internet Shopping : A Case Study of G eshop (인터넷 쇼핑에 의한 상품판매의 지역적 특성 - G eshop의 경우 -)

  • 김영숙
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.769-785
    • /
    • 2003
  • The regional distribution of the selling amount on the internet shopping is divided into urban areas and rural areas. In the urban areas, a large amount of selling and various commodity groups are purchased. In the rural areas, a small amount of selling simple clothing goods, home kitchen goods, and the others commodity groups are purchased. The regional distribution is considered dependent upon the size of population, the development degree of the education and service industry in the region, and the buying power of women in the 25 to 49 year group. This regional trend shows the difference of each population composition between urban and rural areas during the period of economic growth in our country affects internet shopping. Therefore consumer's limited purchase behavior is apparent in rural areas.

Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.645-656
    • /
    • 2018
  • Importance of procuring adequate knowledge about the mechanical behavior of double-layered graphene sheets (DLGSs) incensed the authors to investigate wave propagation responses of mentioned element while rested on a visco-Pasternak medium under hygro-thermal loading. A nonlocal strain gradient theory (NSGT) is exploited to present a more reliable size-dependent mechanical analysis by capturing both softening and hardening effects of small scale. Furthermore, in the framework of a classical plate theory the kinematic relations are developed. Incorporating kinematic relations with the definition of Hamilton's principle, the Euler-Lagrange equations of each of the layers are derived separately. Afterwards, combining Euler-Lagrange equations with those of the NSGT the nonlocal governing equations are written in terms of displacement fields. Interaction of the each of the graphene sheets with another one is regarded by the means of vdW model. Then, a widespread analytical solution is employed to solve the derived equations and obtain wave frequency values. Subsequently, influence of each participant variable containing nonlocal parameter, length scale parameter, foundation parameters, temperature gradient and moisture concentration is studied by plotting various figures.

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.

STUDY ON ATMOSPHERIC BEHAVIOR OF POLYCYCLIC AROMATIC HYDROCARBONS IN URBAN AREA, JEONJU

  • Kim, Hyoung-Seop;Kim, Jong-Guk;Kim, Kyoung-Soo
    • Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.118-127
    • /
    • 2007
  • Between June and November 2002, the atmospheric concentrations and dry deposition fluxes of polycyclic aromatic hydrocarbons (PAHs) in Chonju were measured four times each over five days. The total concentration of PAHs in ambient air was $84\;ng/m^3$, with about 90% existing in the vapor phase. Plots of log ($K_p$) vs. log (${P_L}^0$) indicated that PAHs partitioning was not in equilibrium and the particulate characteristics did not change with seasonal variations. The PAHs fluxes to a water surface sampler (WSS) and a dry deposition plate (DDP) were about 14.15 and $1.92\;{\mu}g/m^2/d$, respectively. The flux of the gaseous phase, acquired by subtracting the DDP from the WSS results, was about $12.23\;{\mu}g/m^2/d$. A considerable correlation was shown between the atmospheric concentrations and deposition fluxes in the gaseous phase, but not in the particulate phase, as the fluxes of the particulate phase were dependent on the physical velocity differences of the particulates based on the particle diameter.

Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors

  • Park, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Flexible $BaTiO_3$ films as dielectric materials for high energy density capacitors were deposited on polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $BaTiO_3$ films were dependent on the sputtering pressure during sputtering. The RMS roughness and crystallite size of the $BaTiO_3$ increased with increasing sputtering pressure. All $BaTiO_3$ films had an amorphous structure, regardless of the sputtering pressures, due to the low PET substrate temperature. The composition of films showed an atomic ratio (Ba:Ti:O) of 0.9:1.1:3. The electrical properties of the $BaTiO_3$ films were affected by the microstructure and roughness. The $BaTiO_3$ films prepared at 100 mTorr exhibited a dielectric constant of ~80 at 1 kHz and a leakage current of $10^{-8}A$ at 400 kV/cm. Also, films showed polarization of $8{\mu}C/cm^2$ at 100 kV/cm and remnant polarization ($P_r$) of $2{\mu}C/cm^2$. This suggests that sputter deposited flexible $BaTiO_3$ films are a promising dielectric that can be used in high energy density capacitors owing to their high dielectric constant, low leakage current and stable preparation by sputtering.