• Title/Summary/Keyword: site-specific integration

Search Result 60, Processing Time 0.028 seconds

Site-Specific Recombination by the Integrase MJ1 on Mammalian Cell (동물 세포 내에서 MJ1 인티그라제에 의한 부위 특이적 재조합)

  • Kim, Hye-Young;Yoon, Bo-Hyun;Chang, Hyo-Ihl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2011
  • Integrase MJ1 from the bacteriophage ${\Phi}FC1$ carries out recombination between two DNA sequences (the phage attachment site, attP and the bacterial attachment site, attB) in NIH3T3 mouse cells. In this study, the integration vector containing attP, attB and the integrase gene MJ, was constructed. The integration mediated by integrase MJ1 in Escherichia coli led to excision of LacZ. Therefore, the frequency of integration was measured by the counting of the white colony, which is detectable on X-Gal plates. The extrachromosomal integration in NIH3T3 mouse cells was monitored by the expression of the green fluorescent protein (GFP) as a reporter. To demonstrate integration mediated integrase MJ1 in NIH3T3 cells, vectors containing attP and attB were co-transfected into NIH3T3 cells. The integration was confirmed by fluorescent microscopy. The expression of GFP was induced in NIH3T3 cells expressing MJ1 without accessory factors. By contrast, the excision mediated by the MJ1 between attR and attL had no effect on the expression of GFP. These results suggest that integrase MJ1 may enable a variety of genomic modifications for research and therapeutic purposes in higher living cells.

Molecular Characterization of the Region Encoding Integrative Functions from Enterococcal Bacteriophage ${\phi}$FC1

  • Kim, Min-Jung;Lee, Jin-Young;Kim, Young-Woo;Sung, Ha-Chin;Chang, Hyo-Ihl
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.448-454
    • /
    • 1996
  • Bacteriophage ${\phi}FC1$ is a temperate phage which was identified as a prophage in the Enterococcus faecalis KBL703 chromosome. Phage ${\phi}FC1$ integrates into the host chromosome by site-specific recombination. The phage attachment site P (attP) was localized within the 0.65-kb XhoI-HindIII fragment and the nucleotide sequence of the region was determined. An open reading frame (mj1) which adjoined the phage attachment site encoded a deduced protein related to the site-specific recombinase family. The organization of this region was comparable to other site-specific recombination systems. The molecular weight of the expressed MJ1 in E. coli was in good agreement with the predicted 53,537 Da of the mj1 gene product. Elucidation of the phage-specific integration process in this study would provide useful genetic tools such as a chromosomal integration system.

  • PDF

Development of a Food-Grade Integration Vector for Heterologous Gene Expression and Protein Secretion in Lactococcus lactis

  • Jeong, Do-Won;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1799-1808
    • /
    • 2006
  • A food-grade integration vector based on site-specific recombination was constructed. The 5.7-kb vector, pIMA20, contained an integrase gene and a phage attachment site originating from bacteriophage A2, with the ${\alpha}$-galactosidase gene from Lactobacillus plantarum KCTC 3104 as a selection marker. pIMA20 was also equipped with a controllable promoter of nisA ($P_{nisA}$) and a signal peptide-encoding sequence of usp45 ($SP_{usp45}$) for the production and secretion of foreign proteins. pIMA20 and its derivatives mediated site-specific integration into the attB-like site on the Lactococcus lactis NZ9800 chromosome. The vector-integrated recombinant lactococci were easily detected by the appearance of blue colonies on a medium containing $X-{\alpha}-gal$ and also by their ability to grow on a medium containing melibiose as the sole carbon source. Recombinant lactococci maintained these traits in the absence of selection pressure during 100 generations. The ${\alpha}-amylase$ gene from Bacillus licheniformis, lacking a signal peptide-encoding. sequence, was inserted downstream of $P_{nisA}\;and\;SP_{usp45}$ in pIMA20, and the plasmid was integrated into the L. lactis chromosome. ${\alpha}-Amylase$ was successfully produced and secreted by the recombinant L. lactis, controlled by the addition and concentration of nisin.

Applications of Transposon-Based Gene Delivery System in Bacteria

  • Choi, Kyoung-Hee;Kim, Kang-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.217-228
    • /
    • 2009
  • Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.

Simultaneous and Sequential Integration by Cre/loxP Site-Specific Recombination in Saccharomyces cerevisiae

  • Choi, Ho-Jung;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.826-830
    • /
    • 2018
  • A Cre/loxP-${\delta}$-integration system was developed to allow sequential and simultaneous integration of a multiple gene expression cassette in Saccharomyces cerevisiae. To allow repeated integrations, the reusable Candida glabrata MARKER (CgMARKER) carrying loxP sequences was used, and the integrated CgMARKER was efficiently removed by inducing Cre recombinase. The XYLP and XYLB genes encoding endoxylanase and ${\beta}$-xylosidase, respectively, were used as model genes for xylan metabolism in this system, and the copy number of these genes was increased to 15.8 and 16.9 copies/cell, respectively, by repeated integration. This integration system is a promising approach for the easy construction of yeast strains with enhanced metabolic pathways through multicopy gene expression.

Site Classification and Design Response Spectra for Seismic Code Provisions - (II) Proposal (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (II) 제안)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.245-256
    • /
    • 2016
  • In the companion paper (I - Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock ($V_{S,Soil}$) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of $V_{S,Soil}$ while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at $V_{S,Soil}$ equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients ($F_v$) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.

Use of the Cellulase Gene as a Selection Marker of Food-grade Integration System in Lactic Acid Bacteria

  • Lee, Jung-Min;Jeong, Do-Won;Lee, Jong-Hoon;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1221-1227
    • /
    • 2008
  • The application of the cellulase gene (celA) as a selection marker of food-grade integration system was investigated in Lactobacillus (Lb.) casei, Lactococcus lactis, and Leuconostoc (Leu.) mesenteroides. The 6.0-kb vector pOC13 containing celA from Clostridium thermocellum with an integrase gene and a phage attachment site originating from bacteriophage A2 was used for site-specific recombination into chromosomal DNA of lactic acid bacteria (LAB). pOC13 was also equipped with a broad host range plus replication origin from the lactococcal plasmid pWV01, and a controllable promoter of nisA ($P_{nisA}$) for the production of foreign proteins. pOC13 was integrated successfully into Lb. casei EM116, and pOC13 integrants were easily detectable by the formation of halo zone on plates containing cellulose. Recombinant Lb. casei EM 116::pOC13 maintained these traits in the absence of selection pressure during 100 generations. pOC13 was integrated into the chromosome of L. lactis and Leu. mesenteroides, and celA acted as an efficient selection marker. These results show that celA can be used as a food-grade selection marker, and that the new integrative vector could be used for the production of foreign proteins in LAB.

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Expression and Purification of Bacteriophage Lambda Integrase by Fusion Protein System (단백질 융합 시스템을 이용한 Bacteriophage Lambda Integrase의 발현 및 정제)

  • 이나영;유승구
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.784-788
    • /
    • 1995
  • The lambda Integrase (Int) carries out site-specific recombination between the two partner DNA sequences, attachment P (attP) and attachment B (attB). In order to study the recombination mechanism, a large quantity of pure integrase is required. Then, we constructed an int gene inserted recombinant plasmid (pNYL3) by using the pQE31 HIS-Tag vector, and produced the fusion protein, 6xHIS-Int from the E. coli TG1 strain carrying the pNYL3 plasmid. The recombinant protein produced was purified by phosphocellulose and Ni$^{++}$-NTA affinity column chromatographies. The result of the in vitro recombination assay using the standard reaction mixture containing 6xHIS-Int and partially purified integration host factor (IHF) showed that the 6xHIS-Int tagged recombination Integrase had the full recombination activity.

  • PDF