• Title/Summary/Keyword: site specific mutagenesis

Search Result 81, Processing Time 0.025 seconds

Pseudomonas sp. strain DJ77에 존재하는 Glutathione S-Transferase 아미노 말단잔기의 Site-directed Mutagenesis

  • Woo, Hee-Jong;Park, Yong-Chjun;Kim, Sungje;Chung, Yong-Je;Chung, An-Sik;Kim, Young-Chang
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.374-378
    • /
    • 1997
  • Glutathione S-transferase (GST) was purified from Pseudomonas sp. DJ77, and its N-terminal sequence was determined to be MKLFISPGACSL. A specific tyrosyl residue in the vicinity of the N terminus is conserved in all the known cytosolic GSTs and has been shown to function as a catalytic residue in $\alpha$, $\mu$, $\pi$ class GSTs from mammals. However, Pseudomonas sp. DJ77 GST has the Phe-4 and Ile-5 instead of Tyr in N-terminus. Its replacement with tyrosine did not significantly affect the enzyme activity. Results from in vitro biochemical analyses were confirmed by the in vivo activity-based CDNB growth inhibition analyses. Our results clearly indicate that GST of Pseudomonas sp. DJ77 has a novel reaction mechanism different from that of mammalian GSTs.

  • PDF

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

Structure of a DNA Duplex Containing a Site-Specific Dewar Isomer: Structural Influence of the 3'-T.G base pair of the Dewar product.

  • Lee, Joon-Hwa;Choi, Byong-Seok
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.268-275
    • /
    • 2000
  • In contrast to the pyrimidine (6-4)pyrimidone photoproduct [(6-4) adduct], its Dewar valence isomer (Dewar product) is low mutagenic and produces a broad range of mutations with a 42 % replicating error frequency. In order to determine the origin of the mutagenic property of the Dewar product, we used experimental NMR restraints and molecular dynamics to determine the solution structure of a Dewar·lesion DNA decamer duplex, which contains a mismatched base pair between the 3'-T residue and an opposed G residue. The 3'-T of the Dewar lesion forms stable hydrogen bonds with the opposite G residue. The helical bending and unwinding angles of the DW/GA duplex, however, are much higher than those of the DW/AA duplex. The stable hydrogen bonding of the G 15 residue does not increase the thermal stability of the overall helix. It also does not restore the distorted backbone conformation of the DNA helix that is caused by the forming of a Dewar lesion. These structural features implicate that no thermal stability, or conformational benefits of G over A opposite the 3'-T of the Dewar lesion, facilitate the preferential incorporation of an A. This is in accordance with the A rule during translesion replication and leads to the low frequent $3'-T{\rightarrow}C$ mutation at this site.

  • PDF

Premature Release of Polyketide Intermediates by Hybrid Polyketide Synthase in Amycolatopsis mediterranei S699

  • Hong, Jay-Sung-Joong;Choi, Cha-Yong;Yoo, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.613-619
    • /
    • 2003
  • The polyketide backbone of rifamycin B is assembled by the type I rifamycin polyketide synthase (PKS) encoded by the rifA-rifE genes. In order to produce novel analogs of rifamycin via engineering of the PKS genes, inactivation of the ${\beta}-ketoacyl:acyl$ carrier protein reductase (KR) domain in module 8 of rifD, by site-specific mutagenesis of the NADPH binding site, was attempted. Module 8 contains a nonfunctional dehydratase (DH) domain and a functional KR domain that is involved in the reduction of the ${\beta}-carbonyl$ group, resulting in the C-21 hydroxyl of rifamycin B. This mutant strain produced linear polyketides, from tetraketide to octaketide, which were also produced by a rifD-disruption mutant as a consequence of premature termination of the polyketide assembly. Another attempt to replace the DH domain of module 7, which has been considered nonfunctional, with a functional homolog derived from module 7 of rapamycin-producing PKS also resulted in the production of linear polyketides, including the heptaketide intermediate and its precursors. Premature release of the carbon chain assembly intermediates is an unusual property of the rifamycin PKS. that is not seen in other PKSs such as the erythromycin PKS.

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

The Characteristics of I269S and I224S Double Mutant Horse Liver Alcohol Dehydrogenase (I269S와 I224S 이중변이 알코올 탈수소효소의 특성)

  • Ryu, Ji-Won;Lee, Kang-Man
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.756-764
    • /
    • 1997
  • Ile-224 in I269S mutant horse liver alcohol dehydrogenase isoenzyme S (HLADH-S) was mutated to serine by site-directed mutagenesis in order to study the role of the residue in c oenzyme binding to the enzyme. The specific activity of the I269S and I224S mutant enzyme to ethanol was increased 6-fold and all Michaelis constants($K_a,\;K_b,\;K_p,\;and\;K_q$,/TEX>) were larger than those for the wild-type and I269S enzyme. The substitution decreased the afffinity to coenzymes and increased the specific activity of the enzyme. The mutant enzyme showed the highest catalytic efficiency for octanol among the primary alcohols. But it didn`t have activities on retinoids and 5${\beta}$-cholanic acid-3-one. From these results, it was confirmed that the hydrophobic interaction of Ile-224 residue with coenzyme was related to coenzyme affinity in ADH reaction. The substitution also affected the substrate affinities to the enzyme.

  • PDF

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol;Kim, Sang-Yoon;Hwang, Dong Hyeon;Oh, Doo-Byoung;Kang, Hyun Ah;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.304-312
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.

Site-specific and deletional mutagenesis for two regions of Verotoxin-2 A gene encoding enzymatically active domain (Verotoxin-2 A 유전자의 효소활성 부위에 대한 위치특이적 변이 및 결손변이유발)

  • Kim, Yong-hwan;Kim, Sang-hyun;Cha, In-ho;Kim, Kyoung-shook;Lee, Young-choon
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.541-546
    • /
    • 1997
  • There are two conserved regions with a significantly high amino acid sequence homology among the A subunits of STX, SLTs and ricin. To produce an inactive Verotoxin-2 (VT-2), two different mutants, pE167D and pDE5A, were constructed by site-directed mutagenesis, respectively, on the basis of the previous reports that two regions lie within the active-site clefts of the A subunits of ricin and STX family. The cytotoxicity ($10^3$ $CD_{50}/ml$) of VT-2 holotoxin with E167D mutation was reduced by $10^3$-fold compared with wild-type level. In addition, VT-2 with DE5A ($Trp_{202}GlyArgIleSer_{206}$) deletion mutation showed a significantly low cytotoxicity ($10^1$ $CD_{50}/ml$), resulting in $10^5$- and $10^2$-fold reductions, respectively, compared with the wild-type and E167D mutatant. SDS-PAGE for protein samples showed a 33-kDa band corresponding to the A subunit of VT-2. These results indicate that reduction in cytotoxic activity was affected not by amount of VT-2 protein produced but by mutation.

  • PDF

Enhancement of antimicrobial peptide genes expression in Cactus mutated Bombyx mori cells by CRISPR/Cas9

  • Park, Jong Woo;Yu, Jeong Hee;Kim, Seong-Wan;Kweon, Hae Yong;Choi, Kwang-Ho;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2018
  • CRISPR/Cas9 gene editing system is an efficient method to mutation in a sequence specific manner. Here we report the direct transfection of the Cas9 nuclease and gene specific guide RNA can be used in BM-N cell line derived from Bombyx mori ovarian tissue to enfeeble function of endogenous gene in vitro. We have used gene editing system to negative regulation components of major signaling cascade, the Toll pathway, which controls B. mori resistance to microbe infections, such as fungi and gram positive bacteria. We demonstrate that the $I{\kappa}B-like$ protein Cactus may controls the activation of transcription factors such as Rel A and Rel B. The direct transfection of Cas9 nuclease and Cactus-specific guide-RNA complex may be used in BM-N cells to disrupt the function of endogenous genes in vitro. A mutation frequency of 30-40% was observed in the transfected cells, and various mutations caused the target region. Moreover, RT-PCR analysis revealed that Cactus gene was down regulated after these mutations. More importantly, mutation of BmCactus stimulated expression of lysozyme, moricin, and lebocin genes. These results suggest that the CRISPR/Cas9 systems are expected to efficiently induce site-specific mutations and it was possible to produce antimicrobial peptide through the gene editing.

Structural Characterization of Mouse HAUSP, a Proteolysis Regulator of p53

  • Lee, Hye-Jin;Yoo, Kyong-Jai;Baek, Kwang-Hyun
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.205-212
    • /
    • 2004
  • The tumor suppressor protein p53 is stabilized by the herpes-virus-associated ubiquitin-specific protease (HAUSP), a deubiquitinating enzyme. We previously isolated and characterized a mouse orthologue of HAUSP, mHAUSP. mHAUSP cDNA consisted of 3,312 bp encodes 1,103 amino acids with a molecular weight of approximately 135 kDa containing highly conserved Cys, Asp (I), His, and Asn/Asp (II) domains. In this study, we carried out site-directed mutagenesis of 6 conserved amino acids (Cys224, Gln231, Asp296, His457, His465, and Asp482) in Cys box, QQD box, and His box. Interestingly, the conserved Gln 231 was not essential for the catalytic activity of mHAUSP. However, the other conserved amino acids were required for deubiquitinating activity of mHAUSP. We performed isopeptidase assay and confirmed that mHAUSP is able to remove ubiquitin from ubiquitinated substrates. In addition, we observed that mHAUSP induces apoptosis in HeLa cells.