Browse > Article
http://dx.doi.org/10.4014/jmb.1211.11048

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha  

Kim, Oh Cheol (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Sang-Yoon (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Hwang, Dong Hyeon (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Oh, Doo-Byoung (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kang, Hyun Ah (Department of Life Science, College of Natural Science, Chung-Ang University)
Kwon, Ohsuk (Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 304-312 More about this Journal
Abstract
The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.
Keywords
Hansenula polymorpha; random mutagenesis; DNA polymerase ${\delta}$; mutator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kang, H. A. and G. Gellissen. 2005. Hansenula polymorpha, pp. 111-142. In G. Gellissen (ed.). Production of Recombinant Proteins. Wiley-VCH.
2 Kang, H. A., W. Kang, W. K. Hong, M. W. Kim, J. Y. Kim, J. H. Sohn, et al. 2001. Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol. Bioeng. 76: 175-185.   DOI   ScienceOn
3 Lai, Y. P., J. Huang, L. F. Wang, J. Li, and Z. R. Wu. 2004. A new approach to random mutagenesis in vitro. Biotechnol. Bioeng. 86: 622-627.   DOI   ScienceOn
4 Kang, H. A., J. H. Sohn, E. S. Choi, B. H. Chung, M. H. Yu, and S. K. Rhee. 1998. Glycosylation of human alpha 1-antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts. Yeast 14: 371-381.   DOI   ScienceOn
5 Kawasaki, Y. and A. Sugino. 2001. Yeast replicative DNA polymerases and their role at the replication fork. Mol. Cells 12: 277-285.
6 Kim, M. W., E. J. Kim, J. Y. Kim, J. S. Park, D. B. Oh, Y. Shimma, et al. 2006. Functional characterization of the Hansenula polymorpha HOC1, OCH1, and OCR1 genes as members of the yeast OCH1 mannosyltransferase family involved in protein glycosylation. J. Biol. Chem. 281: 6261-6272.   DOI   ScienceOn
7 Manivasakam, P. and R. H. Schiestl. 1998. Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol. Cell Biol. 18: 1736-1745.
8 Martin, Y., F. J. Navarro, and J. M. Siverio. 2008. Functional characterization of the Arabidopsis thaliana nitrate transporter CHL1 in the yeast Hansenula polymorpha. Plant Mol. Biol. 68: 215-224.   DOI
9 Morrison, A., A. L. Johnson, L. H. Johnston, and A. Sugino. 1993. Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J. 12: 1467-1473.
10 Morrison, A. and A. Sugino. 1992. Nucleotide sequence of the POL3 gene encoding DNA polymerase III (delta) of Saccharomyces cerevisiae. Nucleic Acids Res. 20: 375.   DOI   ScienceOn
11 Morrison, A. and A. Sugino. 1994. The 3' $\rightarrow$ 5' exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol. Gen. Genet. 242: 289-296.   DOI
12 Pignede, G., D. Bouvier, A. M. de Recondo, and G. Baldacci. 1991. Characterization of the POL3 gene product from Schizosaccharomyces pombe indicates inter-species conservation of the catalytic subunit of DNA polymerase delta. J. Mol. Biol. 222: 209-218.   DOI
13 Oh, K. S., O. S. Kwon, Y. W. Oh, M. J. Sohn, S. G. Jung, Y. K. Kim, et al. 2004. Fabrication of partial genome microarray of the methyltrophic yeast Hansunula polymorpha: Optimization and evaluation of transcript profiling. J. Mol. Biol. 14: 1239- 1248.
14 Park, E. Y., Y. Ito, M. Nariyama, T. Sugimoto, D. Lies, and T. Kato. 2011. The improvement of riboflavin production in Ashbya gossypii via disparity mutagenesis and DNA microarray analysis. Appl. Microbiol. Biotechnol. 91: 1315-1326.   DOI
15 Park, J. N., M. J. Sohn, D. B. Oh, O. Kwon, S. K. Rhee, C. G. Hur, et al. 2007. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl. Environ. Microbiol. 73: 5990-6000.   DOI   ScienceOn
16 Qian, W., H. Song, Y. Liu, C. Zhang, Z. Niu, H. Wang, and B. Qiu. 2009. Improved gene disruption method and Cre-loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J. Microbiol. Methods 79: 253-259.   DOI   ScienceOn
17 Ramezani-Rad, M., C. P. Hollenberg, J. Lauber, H. Wedler, E. Griess, C. Wagner, et al. 2003. The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res. 4: 207-215.   DOI   ScienceOn
18 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
19 Shiwa, Y., S. Fukushima-Tanaka, K. Kasahara, T. Horiuchi, and H. Yoshikawa. 2012. Whole-genome profiling of a novel mutagenesis technique using proofreading-deficient DNA polymerase delta. Int. J. Evol. Biol. 2012: 860-797.
20 Sanchez Garcia, J., L. F. Ciufo, X. Yang, S. E. Kearsey, and S. A. MacNeill. 2004. The C-terminal zinc finger of the catalytic subunit of DNA polymerase delta is responsible for direct interaction with the B-subunit. Nucleic Acids Res. 32: 3005- 3016.   DOI   ScienceOn
21 Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single-stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346.   DOI   ScienceOn
22 Shimoda, C., A. Itadani, A. Sugino, and M. Furusawa. 2006. Isolation of thermotolerant mutants by using proofreadingdeficient DNA polymerase delta as an effective mutator in Saccharomyces cerevisiae. Genes Genet. Syst. 81: 391-397.   DOI   ScienceOn
23 Simon, M., L. Giot, and G. Faye. 1991. The 3' to 5' exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 10: 2165-2170.
24 Snoek, I. S., Z. A. van der Krogt, H. Touw, R. Kerkman, J. T. Pronk, R. A. Bovenberg, et al. 2009. Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet. Biol. 46: 418-426.   DOI   ScienceOn
25 Suwannarangsee, S., S. Kim, O. C. Kim, D. B. Oh, J. W. Seo, C. H. Kim, et al. 2012. Characterization of alcohol dehydrogenase 3 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl. Microbiol. Biotechnol. 96: 697-709.   DOI   ScienceOn
26 Tait, E., M. C. Simon, S. King, A. J. Brown, N. A. Gow, and D. J. Shaw. 1997. A Candida albicans genome project: Cosmid contigs, physical mapping, and gene isolation. Fungal Genet. Biol. 21: 308-314.   DOI   ScienceOn
27 Wong, S. W., A. F. Wahl, P. M. Yuan, N. Arai, B. E. Pearson, K. Arai, et al. 1988. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 7: 37-47.
28 Tanabe, K., T. Kondo, Y. Onodera, and M. Furusawa. 1999. A conspicuous adaptability to antibiotics in the Escherichia coli mutator strain, dnaQ49. FEMS Microbiol. Lett. 176: 191-196.   DOI   ScienceOn
29 van Zutphen, T., R. J. Baerends, K. A. Susanna, A. de Jong, O. P. Kuipers, M. Veenhuis, and I. J. van der Klei. 2010. Adaptation of Hansenula polymorpha to methanol: A transcriptome analysis. BMC Genomics 11: 1.   DOI   ScienceOn
30 van der Klei, I. J., H. Yurimoto, Y. Sakai, and M. Veenhuis. 2006. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim. Biophys. Acta 1763: 1453- 1462.   DOI   ScienceOn
31 Zaccolo, M. and E. Gherardi. 1999. The effect of highfrequency random mutagenesis on in vitro protein evolution: A study on TEM-1 beta-lactamase. J. Mol. Biol. 285: 775-783.   DOI   ScienceOn
32 Abe, H., Y. Takaoka, Y. Chiba, N. Sato, S. Ohgiya, A. Itadani, et al. 2009. Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 19: 428-436.
33 Cheon, S. A., J. Choo, V. M. Ubiyvovk, J. N. Park, M. W. Kim, D. B. Oh, et al. 2009. New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha. Yeast 26: 507-521.   DOI   ScienceOn
34 Abe, H., Y. Fujita, Y. Chiba, Y. Jigami, and K. Nakayama. 2009. Upregulation of genes involved in gluconeogenesis and the glyoxylate cycle suppressed the drug sensitivity of an Nglycan- deficient Saccharomyces cerevisiae mutant. Biosci. Biotechnol. Biochem. 73: 1398-1403.   DOI   ScienceOn
35 Abe, H., Y. Fujita, Y. Takaoka, E. Kurita, S. Yano, N. Tanaka, and K. Nakayama. 2009. Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase delta. J. Biosci. Bioeng. 108: 199-204.
36 Blazhenko, O. V., M. Zimmermann, H. A. Kang, G. Bartosz, M. J. Penninckx, V. M. Ubiyvovk, and A. A. Sibirny. 2006. Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. Biometals 19: 593-599.   DOI
37 Gellissen, G. (ed.). 2002. Hansenula polymorpha: Biology and Applications. Wiley-VCH, Weinheim.
38 Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-Fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345-346.   DOI   ScienceOn
39 de Bruin, E. C., E. H. Duitman, A. L. de Boer, M. Veenhuis, I. G. Bos, and C. E. Hack. 2005. Pharmaceutical proteins from methylotrophic yeasts. Methods Mol. Biol. 308: 65-76.
40 Eldarov, M. A., A. V. Mardanov, A. V. Beletsky, N. V. Ravin, and K. G. Skryabin. 2011. Complete sequence and analysis of the mitochondrial genome of the methylotrophic yeast Hansenula polymorpha DL-1. FEMS Yeast Res. 11: 464-472.   DOI   ScienceOn
41 Hodgkins, M., D. Mead, D. J. Ballance, A. Goodey, and P. Sudbery. 1993. Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations. Yeast 9: 625-635.   DOI   ScienceOn
42 Gellissen, G., G. Kunze, C. Gaillardin, J. M. Cregg, E. Berardi, M. Veenhuis, and I. van der Klei. 2005. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res. 5: 1079- 1096.   DOI   ScienceOn
43 Grabek-Lejko, D., O. B. Ryabova, B. Oklejewicz, A. Y. Voronovsky, and A. A. Sibirny. 2006. Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation. J. Ind. Microbiol. Biotechnol. 33: 934-940.   DOI   ScienceOn
44 Hill, J., K. A. Donald, and D. E. Griffiths. 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19: 5791.   DOI   ScienceOn
45 Itakura, M., K. Tabata, S. Eda, H. Mitsui, K. Murakami, J. Yasuda, and K. Minamisawa. 2008. Generation of Bradyrhizobium japonicum mutants with increased $N_2O$ reductase activity by selection after introduction of a mutated dnaQ gene. Appl. Environ. Microbiol. 74: 7258-7264.   DOI   ScienceOn