• Title/Summary/Keyword: sink capacity

Search Result 106, Processing Time 0.029 seconds

Technical Analysis of Thermal Decomposition Characteristics of Liquid Hydrocarbon Fuels for a Regenerative Cooling System of Hypersonic Vehicles

  • Lee, Hyung Ju
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • A technological review and analysis were performed on thermal cracking of aviation hydrocarbon fuels that circulate as coolants in regenerative cooling systems of hypersonic flights. Liquid hydrocarbons decompose into low-carbon-number hydrocarbons when they absorb a considerable amount of energy at extremely high temperatures, and these thermal cracking behaviors are represented by heat sink capacity, conversion ratio, reaction products, and coking propensity. These parameters are closely interrelated, and thus, they must be considered for optimum performance in terms of the overall heat absorption in the regenerative cooling system and supersonic combustion in the scramjet engine.

Optimizing Network Lifetime of RPL Based IOT Networks Using Neural Network Based Cuckoo Search Algorithm

  • Prakash, P. Jaya;Lalitha, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.255-261
    • /
    • 2022
  • Routing Protocol for Low-Power and Lossy Networks (RPLs) in Internet of Things (IoT) is currently one of the most popular wireless technologies for sensor communication. RPLs are typically designed for specialized applications, such as monitoring or tracking, in either indoor or outdoor conditions, where battery capacity is a major concern. Several routing techniques have been proposed in recent years to address this issue. Nevertheless, the expansion of the network lifetime in consideration of the sensors' capacities remains an outstanding question. In this research, aANN-CUCKOO based optimization technique is applied to obtain a more efficient and dependable energy efficient solution in IOT-RPL. The proposed method uses time constraints to minimise the distance between source and sink with the objective of a low-cost path. By considering the mobility of the nodes, the technique outperformed with an efficiency of 98% compared with other methods. MATLAB software is used to simulate the proposed model.

Growth and Yield of Atractylodes japonica Koidz. Affected by Shading and Flower Bud Pinching (차광 및 화뢰제거가 삽주의 생육 및 수량에 미치는 영향)

  • Park, Jeong-Min;Kang, Jin-Ho;Kim, Man-Bae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.3
    • /
    • pp.231-236
    • /
    • 2004
  • Crop productivity would be determined by relative capacity of source and sink. The study was carried out to measure the effects of shading and flower bud pinching on growth and yield of Atractylodes japonica Koidz. Shading treatment after transplanting was done at 100%, 65, 45 or 25% level of natural light intensity but the pinching treatment was to remove all the inflorescences formed after June 10, July 10, August 10 or none. Growth and yield at early and late stages were periodically measured. At the early stage, shading mainly influenced fresh weight rather than morphological characters. At the late stage, however, severer shading decreased numbers of stems, leaves, roots, fraction and total fresh weight. 65% shading from July 1 to September 30 after skipped the emerging and early growth stages showed nearly same growth and morphological characters but more rhizome yield per unit area than non-shading. In flower bud pinching treatment, earlier pinching increased number of roots, fraction fresh weights per plant and rhizome yield per unit area.

Estimation of Carbon Uptake for Urban Green Space: A Case of Seoul (도시 녹지 가치 평가를 위한 탄소 흡수량 추정 - 서울시를 대상으로 -)

  • Lee, Dong-Kun;Park, Jin-Han;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.607-615
    • /
    • 2010
  • Urban green space is often at the centre of the debate on urban substantiality because it provides functions of space, e.g. for wildlife, recreation, growing vegetables, psychological wellbeing, social interaction, etc. Traditionally, the various functions of urban green spaces clearly show that green spaces contain important values that contribute to the overall quality of urban life. After Kyoto protocol, it has becoming important to more accurately evaluate carbon uptake by urban green space. Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban green space. These studies have been limited by a lack of research on urban tree biomass and carbon uptake by soil, such that estimates of carbon storage in urban systems. This study calculate more accurately the amount of carbon uptake by urban green space. This study also complement the existing methods to estimate the urban green space carbon uptake. It has been studied how to evaluate carbon uptake function of urban green space. The surface area of urban green space increased 5% by complemented method and carbon uptake is also increased. Based on this result, the carbon uptake per capita was analysed and compared to the area of carbon uptake. And this study discussed the reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle. In conclusion, these results could contribute as preliminary data to policy makers when climate change adaptation strategy is established.

An Experimental Study on the Cooling and Heating Performance of a Residential Ground Source Heat Pump System (가정용 지열원 열펌프 시스템의 냉난방 성능 특성 연구)

  • Kong, Hyoung Jin;Kang, Sung Jae;Yun, Kyoung Sik;Lim, Hyo Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2013
  • Ground Source Heat Pump (GSHP) systems utilize geothermal energy as a thermal source or sink, for heating, cooling and domestic hot water. It is well known that GSHP is environmentally friendly, and saves energy dramatically. For this reason, many investigative researches have been conducted on commercial and governmental buildings. However, studies on residential GSHP are few, because of the small capacity and cost. In this study, we experimented with the characteristic performance of heating, cooling and seasonal performance factor for a residential GSHP system, which consisted of two 180 m deep u-tube ground heat exchangers, a heat pump and measurement instruments. The installed capacity of the heat pump was 5RT, and the conditioning area was $62.23m^2$. From the experimental results, the cooling COP of the heat pump was 4.13, and the system COP was 3.51, while the CSPF was 3.32. On the other hand, the heating COP of the heat pump was 3.87, and the system COP was 3.39, while the HSPF was 3.39. Also, in-situ cooling COP and capacity were 93.7% and 96.4% compared with the EWT certification data, respectively, and that of heating were 98.3% and 95.7%, respectively.

A Study on Development of Large-capacity Aluminum Heat Sinks Brazed with a Batch Furnace (대용량 알루미늄 브레이징 히트싱크 개발에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1459-1464
    • /
    • 2009
  • Recently demand for large-capacity aluminum heat sinks has been increased as market for high power electricity expands and high-performance electronic products develop. While the brazed heat sinks are in particular preferred, it is almost impossible to manufacture them with an atmospheric continuous furnace due to insufficient heating rate and various thickness of the parent metals. Therefore, a new index batch furnace is developed and the process variables are optimized. Then, brazing efficiency and tensile stress are obtained for brazed parts of the heat sinks. Finally experiment as well as numerical analysis has been performed to compare thermal efficiency of the brazed heat sinks with that of the silicone-bonded heat sinks.

A Reliability Analysis of Shallow Foundations using a Single-Mode Performance Function (단일형 거동함수에 의한 얕은 기초의 신뢰도 해석 -임해퇴적층의 토성자료를 중심으로-)

  • 김용필;임병조
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-44
    • /
    • 1986
  • The measured soil data are analyzed to the descriptive statistics and classified into the four models of uncorrelated-normal (UNNO), uncorrelated-nonnormal (VNNN), correlatedonnormal(CONN), and correlated-nonnormal(CONN) . This paper presents the comparisons of reliability index and check points using the advanced first-order second-moment method with respect to the four models as well as BASIC Program. A sin91e-mode Performance function is consisted of the basic design variables of bearing capacity and settlements on shallow foundations and input the above analyzed soil informations. The main conclusions obtained in this study are summarized as follows: 1. In the bearing capacity mode, cohesion and bearing-capacity factors by C-U test are accepted for normal and lognormal distribution, respectively, and negatively low correlated to each other. Since the reliability index of the CONN model is the lowest one of the four model, which could be recommended a reliability.based design, whereas the other model might overestimate the geotechnical conditions. 2. In the case of settlements mode, the virgin compression ratio and preccnsolidation pressure are fitted for normal and lognormal distribution, respectively. Constraining settlements to the lower ones computed by deterministic method, The CONN model is the lowest reliability of the four models.

  • PDF

Preliminary Thermal Sizing of Fuel Supply and Cooling System for High-speed Vehicles (고속 비행체 연료공급 및 냉각계통 예비 열설계)

  • Choi, Seyoung;Park, Sooyong;Choi, Hyunkyung;Kim, Joontae;Jeong, Haeseung;Park, Jeongbae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • In this study, preliminary thermal sizing was performed with the aim of developing a fuel supply and cooling system design to solve the heating problems in high-speed vehicles. First, an analysis model was used to satisfy an optional mission profile. The heat loads were computed under boundary conditions. The results were verified using the precedent design case. Then, fuel consumption rates were estimated for the analysis trajectory. Accordingly, the cooling capacity in the system was calculated using the heat sink capacity of the endothermic fuel. Lastly, the fulfillment of the design requirements was confirmed in comparison to the cooling needs.

The Impact of Air Temperature During the Growing Season on NEE of the Apple Orchard (사과 생육기의 기온이 사과원의 NEE에 미치는 영향)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1211-1215
    • /
    • 2012
  • Terrestrial ecosystem are a strong sink of carbon. Forest ecosystem, one of them, has been expected to play an important role in climate changing process by absorbing atmospheric carbon dioxide. On the other hand, agricultural ecosystem that consists mainly of annual crops is regarded as poor contributor to carbon accumulation, because its production (carbon hydrate) is decomposed into carbon at a short period, which is emitted to the atmosphere. However, it is thought that fruit tree plays a great role in decreasing atmospheric carbon dioxide concentration, same as forest. Net ecosystem exchange of $CO_2$ (NEE) was measured to estimate carbon fixation capacity using an eddy covariance (EC) system method in 2 years from 2005 to 2006 at an apple orchard in Uiseong, Gyeongbuk. Average air temperature values were higher in 2006 than in 2005 during the dormant season, and lower by about $5^{\circ}C$ over the growing season causing visible cold injuries. Accordingly, we investigated long-term exchange of carbon to determine how much difference of carbon fixation capacity was shown between 2006 and 2005 in terms of environmental and plant variables such as NEE, leaf area index (LAI), and Albedo. NEE was $4.8Mg\;C\;ha^{-1}yr^{-1}$ in 2005 and $4.7Mg\;C\;ha^{-1}yr^{-1}$ in 2006, respectively. Low temperature after July in 2006 decreased LAI values faster than those in 2005. Meanwhile, Albedo values were higher after July in 2006 than in 2005. These results show that the low temperature after July in 2006 apparently affected apple growth.

Distribution of Heavy Metals in Soils of Shihwa Tidal Freshwater Marshes

  • Yun, Seok-In;Choi, Woo-Jung;Choi, Young-Dae;Lee, Seung-Heon;Yoo, Sun-Ho;Lee, Eun-Ju-;Ro, Hee-Myong
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.65-70
    • /
    • 2003
  • Shihwa tidal freshwater marsh was constructed recently to treat pollutants entering Shihwa lake. In this study, we examined the spatial and temporal patterns of heavy metal accumulation in soils of Shihwa marsh and sought correlations between several soil variables (pH, electrical conductivity, organic matter, and acid ammonium oxalate-extractable Fe and Al contents) and the heavy metal concentration of soils. Surface soil samples (0∼20 cm) were collected in June 2000, November 2000, and July 2001, and were analyzed for heavy metals (Zn, Cd, Pb, Cu, Cr, As, and Hg) and soil chemical properties. The neutral pH and water-saturated conditions of Shihwa marsh appeared to favor immobilization of heavy metal through adsorption onto soils. The concentrations of heavy metal (especially Zn, Cu, and Cr) in soils of Shihwa marsh increased along the sampling occasions, suggesting that soils of Shihwa marsh serve as a sink of heavy metal. Among the sub-marshes, metal concentrations were highest in Banweol high marshes and lowest in Samhwa marshes. The temporal and spatial variations in the heavy metal concentrations of soils were correlated positively with organic matter and oxalate extractable Fe and Al contents, but negatively with electrical conductivity. These results suggest that organic matter and hydrous oxide of Fe/Al may playa key role in removing heavy metals in soils of Shihwa marsh, and that heavy metal removing capacity would increase with desalinization. However, the removal patterns of heavy metal by reeds warrant further studies to evaluate the total removal capacity of heavy metals by Shihwa marsh.