본 연구에서는 기존 매개변수적 수문시계열 예측모형을 보완하고자 Singular Spectrum Analysis(SSA)와 Linear Recurrent Formula를 결합한 모형을 제안하였다. SSA는 주로 시계열에 내재해 있는 구성성분을 추출하기 위한 목적으로 많이 이용되고 있다. 이러한 관점에서 본 연구에서는 엘니뇨 및 라니냐 등의 기상현상과 수문사상의 상관성 분석에 주로 적용되고 있는 SSA와 시계열 예측을 위해서 Linear Recurrence Formula를 결합한 예측 모형을 월단위의 수위와 유입량 시계열 자료를 대상으로 적용성 및 타당성을 검토해 보았다. 모형을 통해 수문시계열을 모의한 결과 전체적인 통계적인 특성 및 시각적인 검토에서 실측자료와 매우 유사한 모의가 가능하였으며 실측 자료를 바탕으로 Blind Forecasting을 실시한 결과 2가지 예에서 모두 1년 정도의 예측구간에서 합리적인 결과를 제시하여 주었다. 따라서 단기예측을 수문모형으로서 적용이 가능할 것으로 사료된다.
Making use of the singular spectrum in the Denjoy-Carleman class we prove the microlocal decomposition theorem and quasianalytic versions of Holmgren's uniqueness theorem and watermelon theorem.
본 연구에서는 여러 기상지수들과 우리나라 기온, 강수량에 대해서 Multi-Channel Singular Spectrum Analysis(MSSA)를 실시함으로써 상호영향에 따른 주성분을 분석하였다. Window length가 150일 때 SOI 등의 기상지수와 기온, 강수량의 MSSA를 실시하였으며 이 때 각각의 eigenvalue는 전체 공분산에 대한 각 요소의 비율을 설명한다. Window length는 Vautard 등(1992)이 제시한 $N/5{\sim}N/3$의 값을 사용하였다. 기상요소들과 기온, 강수량의 MSSA를 이용한 기후변화에 따른 국내 수문변수의 변화 상관분석은 기온과 각 기상요소들과의 분석결과에 비해 강수와 각 기상요소들의 분석결과가 기상요소들에 대한 주기패턴을 잘 따르지 못하고 약한 진폭을 나타내며 특히 SOI와 Rainfall의 경우 첫 번째 주성분에서의 상관분석결과 3개월 지체 시 상관계수 0.8410의 상관성이 높은 장주기 변화 쌍을 가짐에도 불구하고 자료의 변화도에 대하여 각 요소가 설명하는 비중이 매우 낮았다.
Heart sounds are the main obstacle in lung sound analysis. To tackle this obstacle, we propose a diagnosis algorithm that uses singular spectrum analysis (SSA) and frequency features of heart and lung sounds. In particular, we introduce a frequency coefficient that shows the frequency difference between heart and lung sounds. The proposed algorithm is applied to a synthetic mixture of heart and lung sounds. The results show that heart sounds can be extracted successfully and localizations for the first and second heart sounds are remarkably performed. An error analysis of the localization results shows that the proposed algorithm has fewer errors compared to the SSA method, which is one of the most powerful methods in the localization of heart sounds. The presented algorithm is also applied in the cases of recorded respiratory sounds from the chest walls of five healthy subjects. The efficiency of the algorithm in extracting heart sounds from the recorded breathing sounds is verified with power spectral density evaluations and listening. Most studies have used only normal respiratory sounds, whereas we additionally use abnormal breathing sounds to validate the strength of our achievements.
본 연구는 우리나라 강수자료 중 90년 이상의 자료를 보유한 지점(서울, 인천, 목포, 부산)에 대해서 변화도 분석과 Singular Spectrum Analysis(SSA)를 사용하여 자료의 주성분 및 주기성을 분석하였다. 각 자료의 변화도 분석결과 1907에서 2004년까지 98년간의 장기변화 중 선형추세에 의한 강우변화량은 23-11mm/mon 증가한다. 선형추세에 의한 년 강우변화량은 276-132mm/yr 이며 증분의 약 65%가 8월 증가량으로 과거 30년 강우분포는 7월에만 피크를 가지나 최근 30년의 강우분포는 7월과 8월에 비슷한 피크를 가지는 변화를 보일 뿐 아니라 지역에 따라 상이한 분포 양상을 보였다. 강우의 선형적 증가와 함께 변화폭도 증가하며 서울, 인천지역이 목포, 부산지역보다 큰 증가 양상을 보였다. 월 변화패턴과 선형추세 등 확정적 변화를 제거한 anomaly는 장기 변동과 각 달에 대해 다른 변동 폭을 가지는 noise의 합의 형태로 나타난다. Moving ave rage를 이용한 장기변동양상은 특정 주기를 가지지 않을 뿐만 아니라 변동 폭도 noise의 변동 폭에 비하여 미소하다. SSA결과 첫 번째 주성분이 전체변화의 1.7%이며 30번째 성분은 전체변화의 약 1% 정도로 장주기의 변화를 보였으나 전체자료에 비해 각 요소들이 설명하는 비중이 상당히 낮았다.
부채널 분석에서 신호처리 기법은 차원 압축이나 잡음 제거를 통해 분석의 효율성과 성능을 높일 수 있는 전처리 기법이다. 특이값 분해를 이용한 신호처리 방법은 신호의 분산 정보나 경향성 등을 이용하여 주 신호 정보를 높이고 잡음신호를 낮출 수 있어, 분석 성능 향상에 큰 도움이 된다. 대표적인 기법은 주성분분석과 선형판별분석 그리고 Singular Spectrum Analysis(SSA)가 있다. 주성분분석과 선형판별분석은 주 신호의 정보를 집약하여 차원 압축을 할 수 있으며, SSA는 본 신호를 주 신호와 잡음 신호로 분해하여 잡음 제거가 가능하다. 세 가지 기법 각각을 사용하거나 조합하여 사용할 경우 성능적인 측면을 비교할 필요가 있으며, 그에 대한 방법론이 필요하다. 본 논문에서는 세 기법을 개별적으로 사용할 경우와 조합하여 사용할 경우의 성능을 비교 분석하였으며, 신호 대 잡음비를 이용한 비교분석 방법론을 제시하였다. 제시한 방법론과 다양한 비교분석 실험을 통해 각 기법의 성능과 효율성을 확인하였다. 이로 인해 부채널 분석 분야의 많은 연구자들에게 유용한 정보를 제공할 것이다.
Recently Salkuyeh and Rahimian in (Comput. Math. Appl. 74 (2017) 2940-2949) proposed a modification of the generalized shift-splitting (MGSS) method for solving singular saddle point problems. In this paper, we present the spectral analysis of the MGSS preconditioner when it is applied to precondition the singular saddle point problems with the (1, 1) block being symmetric. Some eigenvalue bounds for the spectrum of the preconditioned matrix are given. We show that all the real eigenvalues of the preconditioned matrix are in a positive interval and all nonzero eigenvalues having nonzero imaginary part are contained in an intersection of two circles.
The trends and seasonalities of most time series have a large variability. The result of the Singular Spectrum Analysis(SSA) processing is a decomposition of the time series into several components, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, forecasting by the SSA method should be applied to time series governed (may be approximately) by linear recurrent formulae(LRF). This study examined forecasting ability of SSA-LRF model. These methods are applied to daily water demand data. These models indicate that most cases have good ability of forecasting to some extent by considering statistical and visual assessment, in particular forecasting validity shows good results during 15 days.
By strengthening dichotomy condition and weakening decay conditions, we show that a four term 2n-th order differential operator with unbounded coefficients is nonlimit-point. Using stringent conditions we show that the deficiency index of this operator is determined by the behaviour of the coefficients themselves. Similarly, we prove the absence of singular continuous spectrum and that the absolutely continuous spectrum has multiplicity two.
본 연구에서는 과거 60년 간 한반도에 영향을 미친 태풍의 강도(중심기압)와 지속기간에 대한 경향 분석을 실시하였다. 경향 성분 추출을 위해 Singular Spectrum Analysis(SSA)를 사용하였고 경향 성분에 대한 선형회귀분석 결과 태풍의 강도가 약간 증가하는 것을 볼 수 있었다. 또한 약 30년의 장주기 변화를 발견하였고, 이에 따라 전체 시계열을 30년 기간의 두 개의 하위 기간으로 나눠서 태풍의 중심기압 및 지속기간에 대한 정규분포 및 Gumbel 분포를 추정하였다. 그 결과 두 번째 기간에 평균적인 태풍의 중심기압은 감소하지만 수퍼 태풍에 해당하는 매우 큰 태풍의 비율은 거의 변화가 없음을 발견하였다. 지속기간에 대해서도 두 번째 기간에 뚜렷한 증가가 있음을 발견하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.