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MICROLOCAL ANALYSIS IN THE
DENJOY-CARLEMAN CLASS

JUNE G1 KM, SOON-YEONG CHUNG, AND DOHAN KIM

ABSTRACT. Making use of the singular spectrum in the Denjoy-
Carleman class we prove the microlocal decomposition theorem and
quasianalytic versions of Holmgren's uniqueness theorem and wa-
termelon theorem.

0. Introduction

Microlocal analysis means local analysis on the cotangent bundle and
emphasizes the importance of localization of singularities in cotangent
bundle. Around 1970 Sato introduced and studied the analytic singular
spectrum for the hyperfunction and Hérmander defined the wave front
set WF(u) for the distributions in {4, 6], and Hérmander also intro-
duced the wave front set W Fas(u) with respect to the Denjoy-Carleman
class CM in [5, 6], which includes the analytic wave front set WF "4 (1)
as a special case. On the other hand, making use of the FBI (Fourier-
Bros-Iagolnitzer) transforms Bros and lagolnitzer introduced the essen-
tial spectrum, which was shown to be equal to the analytic singular
spectrum of Sato and the analytic wave front set of Hormander by Bony
in [1].

Recently Chung and Kim have unified the singular spectra for the
€ class, the analytic class and the Denjoy-Carleman class, both quasi-
analytic and non quasianalytic, in the category of the Fourier hyper-
functions in the spirit of the essential spectrum of Bros and lagolnitzer
in [2]. Applying their singular spectrum with respect to the Denjoy-
Carleman class they give a very simple and direct proof of the following
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fundamental theorem for the Fourier hyperfunctions
W Fps(u) C Char PU W F (Pz, D)u).

The purpose of this paper is to study several microlocal properties of
the Fourier hyperfunctions by using a singular spectrum with respect to
the Denjoy-Carleman class W Fys(u) introduced in [2]. Section 1 is de-
voted to providing the necessary definitions and preliminaries. Making
use of the above singular spectrum we prove the decomposition theo-
rem in Section 2. Also, we prove quasianalytic versions of Watermelon
theorem and Holmgren’s uniqueness theorem in Section 3.

When we write up this paper we learn that Hérmander already has
published a preprint [7] which contains a quasianalytic version of Holm-
gren’s uniqueness theorem. But, in our opinion our proof is simpler and
direct.

1. Preliminaries

Let E(z,t) be the n-dimensional heat kernel;

E(z.t) = { (4mt)~"2 exp(—|x|2/4t), t>0
0, t<0.

Let u € F'(R"), i.e., let u be a Fourier hyperfunction in R™ (see below
Definition 1.2 for definition). Then Ul(x,t) = u,(E(z — y,t)), which is
called the defining function of u, is a C* function in the half space RY.
Furthermore, U/{:,t) can be extended as an entire function in C” for each
t > 0.

Note that

(1.1) Uz +14€,t) = (4mt)™™? exple?/at —ilz, &) /2t

x uy(exp[~(w — y)* /4t + iy, £) /2t]),
which is necessary in Section 3.

The following is the local regularity theorem for the Denjoy-Carleman
class CM by Chung-Kim as in [2] for the Fourier hyperfunctions.

THEOREM 1.1 ([2]). Let u be a Fourier hyperfunction. Then u is
CM near x; if and only if there are positive constants C, v, N and a
neighborhood U of xy such that

|y (exp[—[€](z — 1) /2 — iy, £)] )| < C exp[-M(vi€])]
for all z € U and [£| > N, where M(t) is the associated function of M,
(see (2.1) for definition).
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REMARK. Since every analytic functional in R™ can be regarded as
a Fourier hyperfunction, the above theorem is true for each analytic
functional. From now on we denote by A'(R™) the space of analytic
functionals in R™.

With this characterization of CM functions we can introduce a sin-
gular spectrum W Fy (1) with respect to the Denjoy-Carleman class for
the Fourier hyperfunction u as follows:

DEFINITION 1.2 ([2]). Let u be a Fourier hyperfunction. Then we
denote by W Fas(u) the complement of the set of (zg,&y), &o # 0 such
that there exist a neighborhood U of 2y and a conic neighborhood T" of
£ such that for some positive constants C, v and N,

(1.2) |ty (exp[—|€l(z — 1)?/2 — iy, E)])| < C exp[-M (vI€])]
forallzeUand £ eTN{€ R |£| > N}

For the above definitions we first recall the Fourier hyperfunctions.
Let us denote by D™ the compactification R*US% ! of R® where S%! is
an (n — 1)-dimensional sphere at infinity. When z is a vector in R™\{0},
we denote by xoo the point on S*~! which is represented by x, where
we identify S”~! with R"\{0}/R*. The space D" is given the natural
topology, that is:

(i) If a point = € D™ belongs to R", a fundamental system of neigh-
borhoods of z is the set of all open balls containing the point
x.

(ii) If a point z € D" belongs to 5o, a fundamental system of
neighborhoods of z (= yoo) is given by the following family

Ui a(yoo) = {z € R*;z/lz| € A, |z| > A} U {aco;a € A},

where A is a neighborhood of i in the (n - 1)-dimensional sphere
571 in R".

DEFRINITION 1.3. Let K be a compact set in D™, We say that ¢ is
in F(K) if ¢ € C®(QNR"™) for some neighborhood Q of K and if there

are positive constants h and k such that

|0%p(x)|

(1.3) [Blen = sup oy

zCONR™
[a3

exp k|z| < oo,
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where || = a1 + - + @, 0% = OOy .- 05, 0; = 3/0x; for a =
(a1, a2, -+ ,an) € Nj, with Ny the set of nonnegative integers.

We denote by F'(K) the strong dual space of F(K) and call its ele-
ments Fourier hyperfunctions carried by K. Especially if K = D" then
we often use the notation F’ simply instead of F'(D"}.

In fact, the space F(K) is shown to be topologically equivalent to
the space P.(K) of holomorphic functions in a complex neighborhood
QNR™+i{|y| <r} of K in C" satisfying the estimate

(1.4) sup |p(z)| exp k|z] < o0
2EQNR™ +i{|y|<r}

for some k, which was originally defined by Sato-Kawai. Here z = z+1iy
and £ is a neighborhood of K in D",

2. Decomposition theorem

We now introduce the Denjoy-Carleman class which lies between &'
class and the analytic class.

Let My, p = 0,1,2,3,..., be a sequence of positive numbers and {2
be an open set in R™. We impose the following conditions on M;

(M.0) There is a constant & > 0 such that
pl < Ch*M,, p=0,1,2,3,....

(Ml) Mg < Mp_lj\/Ip+1, = 1,2,3, Ve
(M.2)" There is a constant H > 0 such that

Myy, <CH"M,, p=0,1,2,3,....

For each sequence (M), its associated function M(¢) on [0,00) is
defined as follows;

Mgt
(2.1) M) = Sl;p log M,
Then (M.0) gives
(2.2} alog(t) < M) <pt, t>0

for some o, G > (.



Microlocal analysis 565

DEFINITION 2.1. We denote by the Denjoy-Carleman class C*(Q}
the set of all ¢ € C(£2) such that on each compact set K C € its
derivatives satisfy the estimates

sup |[8%@(z)| < Ch'“'MM, a € N§
rEK

for some constants C' > 0 and h > (.

LemMaA 2.2. Let u € A'(R™). Then W Fy;(u) C WF4(u).

Proof. Let (z9,&) ¢ W Fa(u). Then there exist a neighborhood U of
xp and a conic neighborhood T of & such that

fuy (exp[—[€](z — 9)2/2 + i(y,€)] )| < C exp[—c[¢]l.

Now (2.2) implies that

exp[—M(7|¢])] > exp[—7BI¢]] = C exp[—c[¢]]

if 7 is sufficiently small. Hence (zg, &) € W Far(u). O

We now state and prove the main theorem in this section, which gen-
eralizes the microlocal decomposition theorem in the category of analytic
class given in [6].

THEOREM 2.3. Let u € A'(R™) and (zo,é0) € T*R" \ {0}. Then
(zo,&0) ¢ WFa(u) if and only if there are open convex cones I'y, 'z,
-+, Py in{€ € R™; (£,&) < 0}, bounded open neighborhood Z of zg in
C"™, uy € CM in Z, fi holomorphic in ZN{R"+il },k=1,2,3,--- , N,
so that

N
(2.3) u = uy + Z'bpk(fk) on ZNR",
1

where br,_(fi) is the boundary value of fi from I'y (see [6, p.342] for
more details of this boundary value).
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Proof. Let u € A'(R"™). Then for |z — z¢| < € with ¢ > 0 sufficiently
small we have

u(z) = (2m)™" uy (exp[~[€](8 — )*/2 — i{z — v,£))
/

x (J€]/2m)y™/2dE dB + we(z),

where we(z) is analytic in {z € R" ; |z — zg| < €}

We now assume that (zg,£g) ¢ W Fp(u}. Then there is a small conic
neighborhood V of & in R™\ {0} so that the following estimation holds;

| uy (expl-|E|(8 — ¥)? /2 + ilz — y,£)]) 4B

{B—zo|<e

<C exp[—M(’ﬂfl)]a E € Va |§| > Na

where C and c are positive constants independent of z € R”, |x —z¢| < €
and £ € V.

For &; € R™\ {0} with {&;,&) < 0, let I'¢, be a closed conic neighbor-
hood of &; such that

&) >0, (n&)<0 forall nely,.

Also let I'2, be the dual cone of T'¢,. Then we can choose £,£2,...,&N
in {£ e R™*; (&,&) < 0} so that

R™\ {0} = V UInt(T) UInt(TZ,) U--- U Int(TY, ).

Let X0, X1, X2: - -, X~ be a continuous partition of unity of S*~! subor-
dinate to the covering {§”~' NV, S*~*NInt(T'g, ), ..., S Inmt(T'g, )}



Microlocal analysis 567

Then we have

={2r)™" uy (exp[—[€](8 — v)?/2+ iz — 1, 8)])
/fm ra
(|§I/2w)”/2d£ dB + w(x)
= {2m)™" [—181(8 — v)*/2 +ilz — v, )])
[y e
1<|E|<N .
x (J¢|/2m)™/2dg df
+ ) _(2m™ u,, (exp[—|€|(8 — ¥)*/2 + ilz — y,£)])
Z //ﬁmfgffze

x [€]/2m)" 2x; (€/1€]) d€ dB + we(z)
= (D) + (IT) 4+ w,(x).

Observe that (I) and w.(x) are analytic functions of x near z.
We also have

) =@y [[ uyfexpl-1(8 - 9*/2+ iz = 5.6
x (|€]/2m)" 2 x0(£/1€]) d€dB
+ Z(%)- I[ wesl-le-v2+ie-vo)

|B—xal<2e
l€1=N

x (€]/2m)y"2x;(¢/1¢]) dedg

N
= ug(z) + Zuj.

Here we write u; = bp,(f;), and

= @2n) / fw_wf"(exp[_'é'w 92+ ile - u,6)
lEl>1

x (|€1/2my 2x;(€/1€1)dE dB.
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Then f;(z) is an apalytic function in Z N (R™ + iT¢,) with a small com-
plex neighborhood Z of zy. Therefore it remains only to show that fj is
in CM near zg. In fact,

0° o(@)] = |5y [ wlemal-lgl(8 — v /2-+ ity ~ 2,6))

|B—za| <26
|§|=N

x (€] /27y % xo(€/1€]) dE dB
= C/f (1€1/2m)"/% expl-M(vi¢])] 1€]'*! dBde

|B+xa|<2e
ceVlg|lzN

f [ Gelrzo2 i expl-MeD] leli=>" dpag

|B—za|<e
£eV, l§|=N

< C' (L) Miayion
< C(H/M" My

for some constants C = C(n) > 0 and H > 0. Therefore, there exist
constanis ¢ > 0, A > 0 such that

10 fo(z)| < Chl M)y, «€Ng,

for all « in the region |z — zg| < €, which means that « belongs to CM
in |z — xo].

Conversely, suppose the condition (2.3) holds. Then WF4(u;) C
I2, 7 =12,...,N. Hence (zo,&) ¢ U§:1WFA(UJ'), Therefore, (g, £o)
& W F4{u—up) and hence (zp,&) ¢ W Fas {2 —up) by Lemma 2.2. Note
that by Theorem 1.1, ug is C near x4, which implies that

Juoy (exp| €|z — y)*/2 — i(y,£)] )| < C exp|-M(v[¢]))

for all = near zq and |£| > N. Therefore, we must have

Juy (expl—[€)(z — )*/2 — i{y, )] )| S C exp[-M(¥'|¢])]

for all z near zg and |£| > N. Hence (z, &) ¢ W Fas{u), which completes
the proof. 1

REMARK. In the above theorem we do not exclude the case when
CM is the C* class or the analytic class. Therefore, our approach is
very natural, since this unifies all the cases of the C¥, differentiable and
analytic classes.



Microlocal analysis 569

3. Quasianalytic Holmgren’s uniqueness theorem and Wa-
termelon theorem

In this section we will prove the quasianalytic versions of Watermelon
theorem, and Holmgren’s uniqueness theorem consequently. We closely
follow the method of Sjdstrand as in [10, 11, §].

We first note that (1.2) is equivalent to the following condition.

(3.1) Uz + i€, )] < C exp[1/4t — M (v/28)]

forallz € Q, £ € (-T')NS™! and sufficiently small ¢t > 0.
Also, for every £ > 0 we always obtain from (1.1) the estimate of form

(32) |U(z+1iE,t)] < Ceexp|(e(1+ €]} + §% — dist(w, suppu)®) /4¢]

fort >0, z=2z4+1: €C" and v € A'(R").

LEMMA 3.1. Let u € A'(R") and suppu C {z, > 0}. Also, let Q be
a neighborhood of 0 and let I' C R™ \ 0 be an open cone. Suppose that
for some v > 0,

U (e + i€, )| < C explL/4t — M(v/2¢)]

for z € 2, £ € (-T) N 8" ! and for sufficiently small t > 0. Then
for each small v > 0 there exist a neighborhood w of 0 and a positive
constant o such that

(33) [U(z+i(¢, &n+n), 1) < Crexpl(r+£7 + (& +1)2) /At ~ M(a/t)]
forz € w, u € R and for all sufficiently small t > 0.
Proof. First of all, it follows from (3.2) that

(3.4)
U2, 20) + (£, 6n + p), )|
{ C. exp [(s(1+|§'|+|£n+;;£t}+g’2+(£n+u)2)]’ 2, >0,
<

’ 12
C. exp [(e(1+ls F+L£n+u\);rt£ +(£n+.u)2—mi)], z, <0

/2
< Crexp [(T:—f)] exp[Ap(z, +iu)],
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where
A=1/2t >0,

(&n +1)%/2, 2n 20,
((6n + 1) —22)/2, 2, <0.
From now on we may assume that g > (. Consider now the function

P(Tp + ipt) = {

o + 1) = - Pl + €% U@/ 20) + (€ n + 1)

for fixed (z',&'). Let R = {(zn,p);|zn] < a, 0 < p < b} Thenvis
holomorphic in R and (3.4) implies that

(3.5) jw{z, +iu)| < explrp(z, +1in)], (zn,p) € R.

By hypothesis we can write

(3.6) fo(ea)| = 5 expl—(r +€2)/40U( + i€, )
< explén /4t — M({v/2t)]
= exp[A(€a/2 — 2tM (v/21)))]
= exp[A(¢(zn) — 2tM (v/2t)))-

Combining (3.5) and (3.6) we obtain the following subharmonic function

1 . .7
(3.7) (%, 1) = 3 log v| — @@ + i) + 2004 (v/28) f () sin — (8 — 2n)
on
Rs = {(3’)“,[1,);—(1-}-6 Lz, <6, 08 < b}r

where
flpw) = (e”(""‘)/ @ _ e_“(b‘“)/“) / (ewb/a _ e—wb/a) _

Observe that the right hand side of (3.7) is negative or zero on the
boundary of Rs provided that & > 0 is sufficiently small.

Define a function ¢ : R — R by
(3.8)
(T, 1)
_ { p(Tn +ip) — 2tM (y/2t) f(u) sin (w(6 — zn)/a), (Zn, 1) € R,
plan +ip), (zn, 1) ¢ Rs.
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Then ¥ is continuous on R and
(3.9) lv(z}| < exp [Mp(2)], z=2z,+ip€ R.
Note that if 1 belongs to a compact subinterval of [0, 5) we have

(3.10) |[v(ip)| < exp [Ag(in)]
= exp|[A(p(ip) — 2tM(v/2t)d], d>0
= exp|(én + p)? /4t — dM (v/2t)]
< expl(€n + 1) /4t — M(B/2t)]
< exp[(én + p)*/4t — c — M(a/2t)].

Therefore

BI) () + (&0 + 1))
<Crexp [(r+&% + (€ +wP) /2t - M(a/20)]

for sufficiently small |z,| and |z|. O

LEMMA 3.2, Let U, t) = iy (E(z — y,t)), where
i, = A2 exp[(1/X — 1)/4t] exp[(1 — X)(z — y)?/4¢]U,.

Then

Uz +1£,t/X) = Uz +i06,t), |X|=1
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Proof. By simple calculations we obtain that

Ulz +1£,t/A)
AZ A

2ty el 8 (e AU
x expl B D a2 expl L~ HEEL

xuy(exp[(l SIS N
—(amt) P exp [L - L8y gy )

e )4(: o gl 1 08
—(amt) " exp [ — S22,

iyl B i)y
—U(z + A6, 1)

for every |A| = 1. Thus we complete the proof. O

Observe that
X2 exp [(1/ — 1)/4t] exp [(1 — (@ — ) /48] # 0.
Hence
WFM(u) = WFM(T],).
We now state and prove the main theorem of this section.

THEOREM 3.3. Let u € A(R") and suppu C {z, > 0}, and let
(0,€&) ¢ WFy(u), & # 0. Then (0, (&0, 1)) ¢ W Fag(u) for all p with
|p'l < |§0’n|: where 50 = (f{),&m)-

Proof. We may assume that || # 0, {on 2 0. Since (0,&) ¢
W Fys(u), there exist positive constants C and v, a neighborhood €2
of 0 and an open cone I' C R™ \ 0 containing &y such that

Uz + i€, 8)] < Cexp [1/4t — M(/2t)}
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for z € Q, ¢ € (-I') N 8™, sufficiently small t. For given A > 1
consider all (&,&, + u) such that

A &+ ) €S

Choose r > 0 so that rA+ 1/A = 1. Then Lemma 3.2 implies that

Uz + ME & + 1), 0] = |U(z + (€, & + 1), /X))
< CrexpMr + €7 + (&n + 1)?) /4t — M(a/t)]
= Crexp [(Ar + 1/X) /4t — M(a/t)]
= C,exp[l/4t - M({a/t)]

for A(¢',&, +p) e 8™,
Hence

AE &+ p) & WEM(TE) = WFy(u),
which completes the proof. O

COROLLARY 3.4. In addition to the hypotheses of the above theorem
let (0,£) € WEy(u). Then (0,(¢', 1)) € WFy(u) for all p, [yl 2 |&],
where £ = (£',&5).

In the course of the proof of the above theorem, we can also take
A < 1 provided that the associated function M satisfies the following
condition: There are positive constants ¢ and & such that

(A) ct < M(kt) — M(t)

for all sufficiently large t. However, we can easily show that only the
analytic class satisfies the condition (4).

COROLLARY 3.5. If M satisfies the condition (A), then under the
condition of Theorem 3.3 we have (0, (£, 1)) ¢ WFy(u) for all € R.

The following Corollary 3.6 plays a crucial role in a uniqueness the-
orem of Holmgren type. In the case n = 1, Hormander proved that if
w=0in (2% —¢,2% or (z°, 2° +¢) for some ¢ > 0 and (2%, 1) ¢ WFL(u),
then L is non-quasianalytic. Making use of the singular spectrum with
respect to the Denjoy-Carleman class we give here a very short and direct
proof of the following quasianalytic version of Watermelon theorem.
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COROLLARY 3.6. In addition to the hypotheses of Theorem 3.3, let
us assume that CM is quasianalytic and 0 € suppu. Then

(0,(0,... ,0,%1)) € W Fyy (u).

Proof. We observe that there exists £ € S™~! such that (0,£) €
W Fas(u). Otherwise, u is CM in a neighborhood of 0. But then v =0 in
a neighborhood of 0, since CM is quasianalytic and suppu C {z|z, > 0}.
Hence 0 ¢ suppwu, which is a contradiction. First, let us consider the
case that n = 1. Decomposing « into real and complex parts we may
assume that u is real. Suppose that (0,1) ¢ W Fys(u). In this case we
have the following estimate

|uy (exp[—t(z — y)* + ity]) | < Cexp [-M(1t)]

for sufficiently large ¢ > 0 (see Definition 1.2). Therefore, if u is real we
also have the following estimates

|uy (exp{—t(z — y)*] cos(ty)) | < Cexp [-M(4t)]

|uy (exp{—t(z — y)*]sin(ty)) | < Cexp [-M(t)].

Therefore
|uy (exp[—t(z — y)* +ity])} | < Cexp[-M(~1)].

Hence (0, —1) ¢ W Fp(u). So we must have (0,£1) € WFy(u) if 0 €
suppu#. Decomposing u into real and complex parts we conclude that
(0,£1) € WFp(u). Now assume that n» > 2. Then, since {0,£) €
W Fps(u) for some £ € §* we obtain that (0,(0,...,0,£1) € W Far(u)
by Corollary 3.5. O

We are finally in a position to state and prove a quasianalytic version
of Holmgren' uniqueness theorem.

THEOREM 3.7. Suppose CM is quasianalytic. If u € A'(R") van-
ishes on one side of an analytic hypersurface S and (0,£) ¢ W Fp(u),
where £ is one of the conormals to S at x, then u must vanish in some
neighborhood of x.

Proof. If 4 does not vanish in a neighborhood of z, then by Corol-
lary 3.6 and an analytic change of coordinates, we must have (0,£) €
W Far(u), which is a contradiction. O
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