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Heart sounds are the main obstacle in lung sound 
analysis. To tackle this obstacle, we propose a diagnosis 
algorithm that uses singular spectrum analysis (SSA) and 
frequency features of heart and lung sounds. In particular, 
we introduce a frequency coefficient that shows the 
frequency difference between heart and lung sounds. The 
proposed algorithm is applied to a synthetic mixture of 
heart and lung sounds. The results show that heart sounds 
can be extracted successfully and localizations for the first 
and second heart sounds are remarkably performed. An 
error analysis of the localization results shows that the 
proposed algorithm has fewer errors compared to the SSA 
method, which is one of the most powerful methods in the 
localization of heart sounds. The presented algorithm is 
also applied in the cases of recorded respiratory sounds 
from the chest walls of five healthy subjects. The efficiency 
of the algorithm in extracting heart sounds from the 
recorded breathing sounds is verified with power spectral 
density evaluations and listening. Most studies have used 
only normal respiratory sounds, whereas we additionally 
use abnormal breathing sounds to validate the strength of 
our achievements. 
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I. Introduction 

Respiratory sounds recorded from the chest wall of a subject 
depend on the subject’s lung tissue structures. Due to the fact 
that different diseases can have different effects on a person’s 
lung tissue and respiratory sounds, such sounds can be used in 
the diagnosis of airway and lung diseases. However, when lung 
sounds are recorded from the chest wall of a subject, sounds 
from both the subject’s heart and the subject’s immediate 
environment are mixed and picked up. As such, these particular 
sounds will affect the accuracy of any attempted disease 
diagnosis and should therefore be removed. The main 
frequency components of heart and lung sounds lie in the 
ranges of 20 Hz to 150 Hz and 60 Hz to 2,000 Hz, respectively.  

Heart-sound reduction has been accomplished through many 
methods, such as adaptive filters [1], independent component 
analysis [2]–[3], time-frequency filtering [4], wavelet denoising 
[5], entropy-based methods [6], and recurrence time and 
nonlinear prediction [7]. Some of these methods set apart lung 
sounds and heart sounds. Some of the aforementioned methods 
localize both the first and the second heart sound time 
segments from a lung sound recording before removing such 
segments and substituting them with a zero segment. After this, 
the omitted segments, which are now assumed to be free of any 
heart sounds, are predicted using the remaining parts of the 
lung sound recording.  

In [8], a comparison of the aforementioned methods is 
carried out using the methods’ false-positive and false-negative 
errors in the localizations of heart sounds; standard deviations; 
resolutions; speeds; sensitivities to window sizes; and modes 
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(that is, whether a method is classed as automatic or manual,  
as in a method may require some manual adjustment of 
parameters for different subjects). This comparison 
demonstrated that entropy-based and wavelet methods have a 
greater efficiency over the other methods in the localization of 
heart sounds.  

In [9], a singular spectrum analysis (SSA)–based method is 
introduced. The realized results with this method are better than 
those of the entropy-based and wavelet methods in a medium 
flow rate in terms of false-positive and false-negative errors 
and correlations between extracted heart sounds and their 
original sounds. Furthermore, the SSA- and entropy-based 
methods have equal results in low flow rates for the given 
dataset used in [9].  This study revealed that the SSA-based 
method has a minimum error when it comes to the localization 
of heart sounds. Therefore, in this paper, a new algorithm based 
on SSA and frequency features of heart sounds is presented to 
localize heart sounds in recordings that feature a mixture of 
lung sounds and heart sounds. 

The rest of this paper is organized as follows. In Section II, 
the SSA method and proposed algorithm, along with the data 
used in this paper, are introduced. Subsequently, in Section III, 
simulation results and a comparison with the SSA-based 
method of [9] are presented; and finally, Section IV is devoted 
to discussion and conclusion. 

II. Methodology  

1. Diagnostic Algorithm 

In this section, the proposed diagnostic algorithm for heart 
sound localization and environment noise reduction from 
respiratory sound is explained. A block diagram of this 
algorithm is shown in Fig. 1. 

As Fig. 1 shows, to localize heart sounds in respiratory sound, 
firstly, a recorded signal is high-pass filtered with 20 Hz cutoff 
frequency. Then, using the SSA method, the filtered signal is 
decomposed into its components; the noise components are 
then are removed from the filtered sound. After this, the 
proposed algorithm is then able to identify heart sound 
components. Finally, the heart sound components are separated 
 

 

Fig. 1. Block diagram of proposed diagnostic algorithm. 
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from the respiratory sound and the first and second heart 
sounds are localized. 

Since the presented algorithm is a modification of the SSA-
based method of [9], we now take the time to introduce the 
related SSA algorithm as follows. 

2. SSA Method  

To reconstruct an attractor in a phase space, one must 
overcome the problems of selection of the best lag and 
embedding dimension in noisy data. The SSA method 
reconstructs signals in a k-dimensional phase space with time 
delay equal to one unit. The method is more sophisticated than 
the time delay method of [10], but it has the potential of 
providing more information. In the SSA method, after 
reconstructing a signal in a phase space, the signal is 
decomposed into several components. Then, these components 
are divided into groups, each of which is of a different dynamic. 
The number of groups depends on the complexity of the signal 
and any special requirements of the problem of separation. 
Based on different features, each component is assigned to a 
group, such as slowly varying trends, oscillatory components, 
quasi-periodic components, and random noise [11]. In the 
following, the SSA method is briefly described. 

The SSA method generally consists of four steps. These are 
as follows. The first step is the reconstruction of the trajectory 
matrix and phase space. Let us assume that x is a time series of 
length N; that is, 

1 2 [ , ,, ].Nx x x x              (1) 

Then, using a window length of L (2 ≤ L ≤ N/2), we set    
L = 300 (to provide a fair decomposition and avoid a high 
computational cost) and K = N – L + 1; trajectory matrix Z is 
then reconstructed as 
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where Z is a Hankel matrix (that is, it has equal elements along 

all of its diagonals; i + j = constant). After this step and 

reconstruction of the trajectory matrix, the second step is the 

singular value decomposition (SVD) of ZTZ. In this step, L 

eigenvalues ( 1 0L   ) are produced in descending 

order of the amplitude (corresponding to L eigenvectors (U1, 

… , UL)). The SVD of the trajectory matrix is 

1 2 .d  Z Z Z Z             (3) 

Likewise, d = argmaxi { i > 0} and Zi is the projection of Z in 
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the direction of Ui. 
Grouping is the third step of the SSA method. In this step, the 

set of indices {1, 2, … , d} is divided into several groups. The 
sum of the time series according to the indices in each group is 
a dynamic of a system that generates the considered signals.  

In the extraction of heart sounds from respiratory sounds, 
there are three (behavior) dynamics that can be found in the 
recordings of such sounds — heart sound, lung sound, and 
environment noise. So, in the grouping step, there are three 
groups. In this paper, we introduce a modified SSA algorithm 
to identify those indices in each group that correspond to heart 
and lung sounds. 

The final step in the SSA method is diagonal averaging. In 
this step, each group is transformed into a new time series 
using averaging over the diagonals i + j = constant [11]–[12].  

To extract the heart sounds from the lung sounds and 
environment noise, three time series corresponding to each of 
the three groups are extracted. In following, we introduce how 
to identify the components of each group. 

A. Random Noise Reduction  

In assuming that the environment noise is random, we note 
that this implicitly implies that a random signal has low 
variance in all directions. Therefore, the directions of 
eigenvectors corresponding to small eigenvalues are due to the 
noise; hence, it is these eigenvectors that should be removed. 
To implement this, the eigenvalues that are approximately 
equal to zero are selected in proportion to the noise. To identify 
the noise eigenvalues, we consider the graph of the eigenvalue 
amplitudes (see Fig. 2). From this graph, we select the point 
where the slope begins to level off; that is, at the 52nd 
eigenvalue number (beyond this value, the normalized 
eigenvalues are less than 0.004, which then acts as an upper 
bound). The eigenvalues smaller than this eigenvalue number 
are then assumed to be caused by noise. We use the following 
conditions to select this eigenvalue number: 

1  
 10,

( ) / ( )
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In this equation, λ is a normalized eigenvalue. All eigenvectors 
corresponding to eigenvalues lower than λm are related to the 
noise and must be removed. Therefore, the SVD of the 
denoised trajectory matrix is 

1 2 ,d m  Z Z Z Z               (5) 

where Zm is the projection of the trajectory matrix (of the 
original signal before denoising) onto the direction of the 

 

Fig. 2. Eigenvalues lower than 52nd eigenvalue number are 
assumed to equal zero and correspond to random noise.
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eigenvector related to m .  

In Fig. 2, eigenvalues larger than the extracted eigenvalue 
number (52) are related to the random environment noise for a 
typical noisy signal. After noise reduction, a further step is to 
then remove the heart sound. In the following, we introduce 
our proposed algorithm, which is used to identify heart sound 
components. 

B. Identification of Heart Sound Components 

In [9], using the SSA method, the heart sound is localized in 
the recorded respiratory sound. In the method of [9], it is 
assumed that the components of the heart sound have larger 
eigenvalues in low and medium flow rates. Therefore, from 
those eigenvalues corresponding to the periodic components, 
the six largest eigenvalues were selected to represent the 
components of the heart sound. However, this hypothesis is not 
true for all medium flow rates. In fact, for some medium flow 
rates, only two or four of the largest eigenvalues are 
proportional to the heart sound, and other larger eigenvalues 
correspond instead to components of the lung sound. Therefore, 
this assumption can reduce the accuracy of heart sound 
localization. As mentioned in [9], this hypothesis is not true for 
respiratory sound in high flow rates. To solve this problem and 
select more accurate eigenvalues corresponding to heart sound 
components, in this paper, the frequency properties of a heart 
sound are used.  

We identified heart sound eigenvalues based on the fact  
that the principal frequency component of a heart sound is in 
the range 20 Hz to 150 Hz, whereas a respiratory sound’s 
bandwidth lies in the range 60 Hz to 2,000 Hz. To use these 
properties for each eigenvalue and its corresponding 
component, each eigenvector is transformed to the frequency 
domain, and the energy percentage of the spectrum is 
calculated by dividing the energy of an eigenvector in the range 
of 20 Hz to 150 Hz by the energy of the eigenvector in the 
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range of 20 Hz to 2,000 Hz. Since the heart sound components 
have the highest energy in the range 20 Hz to 150 Hz, such a 
ratio for them is very small. We assume for the heart sound 
components that this ratio is less than 0.3 and that each 
component having energy less than 0.3 in the ranges of 150 Hz 
to 2,000 Hz and 20 Hz to 2,000 Hz corresponds to a heart 
sound, which means 

f (150Hz 2,000Hz)

f (20Hz 2,000Hz)
0.3.

E
E




          (6) 

In (6), f (150Hz 2,000Hz)E   is the energy of a component in the 

frequency range of 150 Hz to 2,000 Hz and f (20Hz 2,000Hz)E   

is the energy of a component in the frequency range of 20 Hz 

to 2,000 Hz.  
In our algorithm, the amplitude of eigenvalues is not 

important and does not affect identification of heart sound 
components. Therefore, flow rate and heart sound intensity in 
the recorded sound are not important in the identification of 
heart sound components.  

Assuming that 
1 2
, , , ,

pI I I   are the identified 
eigenvalues of the heart sound, the SVD of the heart sound 
trajectory matrix is then 

1 2
,

mh I I I  Z Z Z Z             (7) 

where Zh is the trajectory matrix of the heart sound. Other 
eigenvalues are related to the respiratory sound. We expect that 
this algorithm identifies the heart sound components more 
accurately and localizes the heart sound with smaller error. The 
results have verified this. The locations of the first and second 
heart sounds are identified in the extracted heart sound using an 
adaptive threshold defined as (μ + σ), where μ and σ are the 
mean and the standard deviation of the envelope of the 
extracted heart sound, respectively [9]. 

C. Data  

In this paper, both the proposed algorithm and the SSA 
method in [9] are performed for three different datasets. The 
first dataset is the heart and lung sounds used in [9]. By 
applying these algorithms to these data, we can correctly 
compare our proposed algorithm with the SSA method 
introduced in [9]. The second dataset is obtained from [13]–
[14]. This dataset contains normal and abnormal respiratory 
sounds, and recorded and simulated heart sounds. Using 
various mixtures of these sounds, we can produce recordings 
consisting of both lung and heart sounds. To mix the heart and 
lung sounds in a complex manner, the sounds are first 
normalized within the interval [−1, 1]. They are then passed 
through two randomly generated finite impulse response filters 
of length four and added together [9]. Both the proposed 

algorithm and the SSA method are performed for these 
synthesized data, and components of the heart sounds are 
identified in both methods. In the extracted heart sounds, the 
first and second heart sounds are localized. Finally, the 
percentage of false-negative and false-positive errors in 
localizations of the heart sounds for these methods are 
compared. The third dataset is recorded from five healthy 
subjects aged between 17 years and 25 years old. These data 
are recorded in the 2nd intercostal distance by an ECM44 Sony 
microphone in low and medium flow rates. This microphone is 
air-coupled and its frequency response is in the range of 40 Hz 
to 15,000 Hz [15], which is appropriate to record the 
respiratory sounds. The sampling rate was 40 kHz, which was 
later down-sampled to 5 kHz. Based on the fact that the heart 
and lung sounds’ frequency bandwidths are higher than 20 Hz, 
the recorded signal is passed from a high-pass filter with 20 Hz 
cutoff frequency. 

III. Results 

In this section, the results for the SSA method and proposed 
algorithm on the aforementioned three different datasets are 
expressed. For each dataset, the typical extracted heart and lung 
sounds are shown and the two methods (SSA and proposed) 
are compared based on false-positive and false-negative errors 
in the localization of the first and second heart sounds. 

1. First Dataset 

To compare the proposed algorithm with the SSA method 
proposed in [9] (which has had the best efficiency in the 
localization of heart sounds), both algorithms are executed on 
the data used in [9]. Figure 3 demonstrates the typical heart and 
lung sounds, and their mixture, for a medium flow rate. The 
extracted heart and lung sounds obtained by using the two 
aforementioned methods are shown in Figs. 4 and 5. Similarly, 
the mean and standard deviation of the false-negative and false-
positive errors in the localization of the first and second heart  

  

Table 1. Mean and standard deviation of false-positive and false-
negative errors for SSA and proposed algorithms in low and 
medium flow rates for 100 different mixtures of first dataset.

Flow rate Low Medium 

Error 
False positive 

(%) 
False negative 

(%) 
False positive 

(%) 
False negative 

(%) 

SSA method 0.0  0.0 0.0  0.0 1.32  1.43 0.54  1.03

Proposed 
algorithm 

0.0  0.0 0.0  0.0 0.18  0.69 0.02  0.14

 



828   Malihe Molaie and Mohammad Hassan Moradi ETRI Journal, Volume 37, Number 4, August 2015 
http://dx.doi.org/10.4218/etrij.15.0114.1447 

 

Fig. 3. Lung sound (a), heart sound (b), and their mixture (c).
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Fig. 4. Extracted lung sound (a) and heart sound (b) using SSA
method. 
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sounds for 100 different mixtures of heart and lung sounds in 
low and medium flow rates are reported in Table 1. As shown 
in Table 1, false errors for both methods are equal to zero in the 
low flow rates, and the proposed algorithm has less false-
positive and false-negative errors than the SSA method in the 
medium flow rates.  

Figures 4 and 5 show that the proposed algorithm is able to 
extract heart and lung sounds more accurately than the SSA 
method. 

2. Second Dataset 

In this subsection, the results of the proposed algorithm and 
SSA method are shown for the mixture data obtained from 
[13]–[14]. One hundred different mixtures of these heart and  

 

Fig. 5. Extracted lung sound (a) and heart sound (b) using 
proposed algorithm. 
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Fig. 6. Lung (a) and heart (b) sounds achieved from second 
dataset and their mixture (c). 
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lung sounds are produced in low and medium flow rates. A 
typical mixture of these sounds is shown in Fig. 6. Likewise, 
the extracted heart and lung sounds using the two 
aforementioned methods are depicted in Fig. 7. The power 
spectrums of the original lung sound and extracted lung 
sounds via the SSA and proposed methods are exhibited in 
Fig. 8. The mean and standard deviation of false-negative and 
false-positive errors for 100 different mixtures are reported in 
Table 2. 

From Table 2, it is observed that for this dataset, in low and 
medium flow rates, false-negative and false-positive errors for 
the proposed algorithm are equal to zero and are less than those 
for the SSA method. This means that for this dataset, the  
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Table 2. Mean and standard deviation of false-positive and false-
negative errors in localization of heart sounds for second 
dataset. 

Flow rate Low Medium 

Error 
False positive 

(%) 
False negative 

(%) 
False positive 

(%) 
False negative 

(%) 

SSA method 0.05  0.33 0.03  0.17 1.8  3.01 0.73  1.7

Proposed 
algorithm 

0.0  0.0 0.0  0.0 0.0  0.0 0.0  0.0 

 

 

 

Fig. 7. Extracted heart and lung sounds using SSA ((a) and (b))
and proposed ((c) and (d)) methods. 
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Fig. 8. Power spectral density of original lung sound; mixture of 
heart and lung sounds; and output lung sounds of SSA 
and proposed methods.  

 
proposed algorithm identifies all of the locations of the heart 
sounds correctly. 

From Fig. 7, it is known that the proposed algorithm can 
extract the heart sound components more accurately than the  

Table 3. Mean and standard deviation of false-positive and false-
negative errors in localization of heart sounds in abnormal 
respiratory sounds using proposed algorithm. 

Flow rate Low Medium 

Error 
False positive 

(%) 
False negative 

(%) 
False positive 

(%) 
False negative 

(%) 

Proposed 
algorithm 

0.0  0.0 0.0  0.0 0.32  0.78 0.0  0.0 

 

 
SSA method, because six higher eigenvalues in this dataset, 
with medium flow rates, are not corresponding to heart sounds. 
However, it is known that heart sounds are concentrated in 
lower frequencies than respiratory sounds despite the fact that 
both sounds share the same bandwidth. The power spectrums 
of the extracted lung sounds from the SSA and proposed 
methods in Fig. 8 show that the spectrum of the extracted lung 
sound from the proposed algorithm is more similar to that of 
the original lung sound. 

Abnormal lung sounds. In [13], there are some different 
abnormal respiratory sounds. These sounds are mixed with the 
heart sounds achieved from [14]. The abnormal respiratory 
sounds used here consist of course and fine crackles, wheezes, 
and stridors. The SSA method could not extract heart sounds 
from these abnormal respiratory sounds and signed the first and 
second heart sounds correctly. The mean and standard 
deviation of false-positive and false-negative errors in the 
localization of the heart sounds using the proposed algorithm 
for 100 different mixtures of the heart and abnormal respiratory 
sounds in low and medium flow rates are reported in Table 3. A 
typical crackle sound and its mixture with heart sound are 
shown in Fig. 9. The extracted heart sound using the proposed 
algorithm is also shown in this figure, and the locations of the 
heart sounds are signed. 

Table 3 illustrates that the means of the false-negative and 
false-positive errors in low and medium flow rates are both 
equal to zero. These low mean errors illustrate that the 
proposed algorithm can separate heart sounds and localize 
them in abnormal breathing sounds efficiently. As Fig. 9 shows, 
the proposed algorithm can extract the heart sound components 
and localize the first and second heart sounds correctly. 

3. Third Dataset 

In this subsection, a typical result from performing the 
proposed algorithm on the recorded data from five healthy 
subjects is shown. To estimate the efficiency of the proposed 
algorithm in extracting heart sound components in the real 
recorded data from the chest wall, the extracted lung sounds are 
listened to and the power spectrum density and time shape of  
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Fig. 9. Abnormal crackle sound (a), heart sound (b), their mixture 
(c), and extracted heart sound (d). 
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them are evaluated. Typical examples of the recorded sound 
and extracted heart and lung sounds are shown in Fig. 10, and 
their spectra are exhibited in Fig. 11. 

As Figs. 10 and 11 show, the heart sounds are extracted from 
the recorded respiratory sounds. Extraction of heart and lung 
sounds is done better in medium flow rates as opposed to in 
low flow rates. In low flow rates, some audible heart sounds 
remain in the lung sound, but their intensity is reduced 
significantly. The output respiratory sounds are listened to, and 
the extractions of heart sounds in low and medium flow rates 
(and their subsequent removal) is verified. There are no audible 
heart sounds in the output respiratory sounds for medium flow 
rates. 

 

Fig. 10. Recorded respiratory sound from chest wall (a), filtered
respiratory sound (b), extracted heart sound (c), and
extracted lung sound (d). 
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Fig. 11. Power spectral density of recorded lung sound; filtered
lung sound; and extracted lung and heart sounds with
proposed algorithm. 
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IV. Discussion and Conclusion 

Recorded respiratory sounds from the chest wall consist of 
heart sounds and environment noises. Hence, in this paper, a 
modified algorithm has been introduced based on the SSA 
method and frequency properties of heart and respiratory 
sounds. The presented algorithm has been compared with the 
SSA method in the detection of heart sound. Comparisons of 
these methods are performed for two synthetic datasets, and the 
results are based on the false-positive and false-negative errors 
of localizations of heart sounds and power spectrum densities 
of extracted lung sounds.  

We expected the proposed method to discover heart sounds 



ETRI Journal, Volume 37, Number 4, August 2015 Malihe Molaie and Mohammad Hassan Moradi   831 
http://dx.doi.org/10.4218/etrij.15.0114.1447 

more accurately than the SSA method, because in some 
medium flow rates the six highest eigenvalues do not 
correspond to heart sounds; only two or four of these are 
related to heart sounds. The proposed method achieves more 
accurate results because it is based on the fact that heart sounds 
have less energy in the range of 150 Hz to 2,000 Hz than 
respiratory sounds.  

For the first dataset, the means of the false-positive and false-
negative errors for the proposed method are 0.18 and 0.02, 
respectively, in medium flow rates and are zero in low flow 
rates. For the second data set, the means of the errors are zero 
in both low and medium flow rates. The results of the proposed 
method show better performances than the SSA method, as 
expected. The proposed algorithm is also performed to extract 
the heart sound and detect the location of the first and second 
heart sounds in a mixture of heart and abnormal respiratory 
sounds. For this dataset, the mean of the false-negative errors is 
zero in low and medium flow rates, whereas the mean of the 
false-positive errors is zero in low flow rates and 0.32 in 
medium flow rates. False-positive and false-negative errors 
have verified our algorithm’s efficiency in extracting heart 
sounds from abnormal breathing sounds. On the contrary, the 
SSA method couldn’t identify heart sound components 
correctly because in some abnormal breathing sounds, such as 
crackles, the highest eigenvalues are related to the breathing 
sound components.  

Using the proposed algorithm for the recorded breathing 
sounds from the chest wall illustrates that the algorithm can 
extract lung and heart sounds as well. Results were confirmed 
by listening, and no audible heart sounds were heard in 
extracted lung sounds in medium flow rates. The intensity of 
heart sounds significantly decreases in low flow rates. 
Furthermore, the power spectrum of the extracted lung sounds 
verified that the heart sound components, which have lower 
frequency, were extracted from the recorded lung sounds. 
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