• Title/Summary/Keyword: single-objective optimization

Search Result 220, Processing Time 0.025 seconds

Meta-Heuristic Algorithm Comparison for Droplet Impingements (액적 충돌 현상기반 최적알고리즘의 비교)

  • Joo Hyun Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.161-168
    • /
    • 2023
  • Droplet impingement on solid surfaces is pivotal for a range of spray and heat transfer processes. This study aims to optimize the cooling performance of single droplet impingement on heated textured surfaces. We focused on maximizing the cooling effectiveness or the total contact area at the droplet maximum spread. For efficient estimation of the optimal values of the unknown variables, we introduced an enhanced Genetic Algorithm (GA) and Particle swarm optimization algorithm (PSO). These novel algorithms incorporate its developed theoretical backgrounds to compare proper optimized results. The comparison, considering the peak values of objective functions, computation durations, and the count of penalty particles, confirmed that PSO method offers swifter and more efficient searches, compared to GA algorithm, contributing finding the effective way for the spray and droplet impingement process.

Correlation Between Spray Characteristics and Etching Characteristics in Twin Spray (이중분무에서 분무특성과 에칭특성의 상호상관)

  • Jung, Ji-Won;Kim, Young-Jin;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.449-455
    • /
    • 2004
  • The objective of this study is to obtain the correlation between the spray characteristics and the etching characteristics for the optimization of etching system in the micro fabrication industry. The etching characteristics such as etching rate were measured under different conditions. The single spray characteristics such as droplet size and velocity were measured by PDA system. These were compared to the etching characteristics. The twin spray characteristics in the overlap region were analyzed to predict the effect of them on the etching characteristics with the pitch and also were compared to the single spray. The etching rate was increased in case of high spray pressure and in the region of spray center. It was found that the etching characteristics could be correlated with the single spray characteristics and the twin spray characteristics were correlated with the etching characteristics.

Optimization of Stacking Strategies Considering Yard Occupancy Rate in an Automated Container Terminal (장치장 점유율을 고려한 자동화 컨테이너 터미널의 장치 위치 결정 전략 최적화)

  • Sohn, Min-Je;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1106-1110
    • /
    • 2010
  • This paper proposes a method of optimizing a stacking strategy for an automated container terminal using multi-objective evolutionary algorithms (MOEAs). Since the yard productivities of seaside and landside are conflicting objectives to be optimized, it is impossible to maximize them simultaneously. Therefore, we derive a Pareto optimal set instead of a single best solution using an MOEA. Preliminary experiments showed that the population is frequently stuck in local optima because of the difficulty of the given problem depending on the yard occupancy rate. To cope with this problem, we propose another method of simultaneously optimizing two problems with different difficulties so that diverse solutions can be preserved in the population. Experimental results showed the proposed method can derive better stacking policies than the compared method solving a single problem given the same computational costs.

The automated optimum design of steel truss structures (철골 트러스 구조의 자동화 최적설계)

  • Pyeon, Hae-Wan;Kim, Yong-Joo;Kim, Soo-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.143-155
    • /
    • 2001
  • Generally, truss design has been determined by the designer's experience and intuition. But if we perform the most economical structural design we must consider not only cross-sections of members but also configurations(howe, warren and pratt types etc.) of single truss as the number of panel and truss height. The purpose of this study is to develope automated optimum design techniques for steel truss structures considering cross-sections of members and shape of trusses simultaneously. As the results, it could be possible to find easily the optimum solutions subject to design conditions at the preliminary structural design stage of the steel truss structures. In this study, the objective function is expressed as the whole member weight of trusses, and the applied constraints are as stresses, slenderness ratio, local buckling, deflection, member cross-sectional dimensions and truss height etc. The automated optimum design algorithm of this study is divided into three-level procedures. The first level on member cross-sectional optimization is performed by the sequential unconstrained minimization technique(SUMT) using dynamic programming method. And the second level about truss height optimization is applied for obtaining the optimum truss height by three-equal interval search method. The last level of optimization is applied for obtaining the optimum panel number of truss by integer programming method. The algorithm of multi-level optimization programming technique proposed in this study is more helpful for the economical design of plane trusses as well as space trusses.

  • PDF

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint

  • Zawidzki, Machi;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.715-725
    • /
    • 2018
  • Truss-Z (TZ) is an Extremely Modular System (EMS). Such systems allow for creation of structurally sound free-form structures, are comprised of as few types of modules as possible, and are not constrained by a regular tessellation of space. Their objective is to create spatial structures in given environments connecting given terminals without self-intersections and obstacle-intersections. TZ is a skeletal modular system for creating free-form pedestrian ramps and ramp networks. The previous research on TZ focused on global discrete geometric optimization of the spatial configuration of modules. This paper reports on the first attempts at structural optimization of the module for a single-branch TZ. The internal topology and the sizing of module beams are subject to optimization. An important challenge is that the module is to be universal: it must be designed for the worst case scenario, as defined by the module position within a TZ branch and the geometric configuration of the branch itself. There are four variations of each module, and the number of unique TZ configurations grows exponentially with the branch length. The aim is to obtain minimum-mass modules with the von Mises equivalent stress constrained under certain design load. The resulting modules are further evaluated also in terms of the typical structural criterion of compliance.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Ultra-precision High Numerical Aperture Plastic Objective Lens for Blu-ray Disc Pick-up (블루레이 디스크 픽업용 초정밀 고개구율 플라스틱 대물렌즈)

  • Kim, Boo-Tae;Hyun, Dong-Hoon;Yoo, Kyung-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.811-816
    • /
    • 2011
  • We develop a plastic object lens for blu-ray disc playing pick-up module as morethan 0.85 numerical aperture in this research. We design plastic object lens for blu-ray disc playing pick-up module's each factor's in balanced and made our designed lens by injection molding. Furthermore, by correction designing in mold-core, we optimization our lens efficiency as world grade; wave front aberration $0.028{\lambda}$. RMS, light axis differential 0.3967arcmin. We can manufacture localized blu-ray disc's pick-up lens's component and by this fact we obtain international competitiveness. The result of this research will be very helpful to develop a single objective lens for 3 different wavelength of laser diodes in playing and recording pick-up module.

Clustering Parts Based on the Design and Manufacturing Similarities Using a Genetic Algorithm

  • Lee, Sung-Youl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.119-125
    • /
    • 2011
  • The part family (PF) formation in a cellular manufacturing has been a key issue for the successful implementation of Group Technology (GT). Basically, a part has two different attributes; i.e., design and manufacturing. The respective similarity in both attributes is often conflicting each other. However, the two attributes should be taken into account appropriately in order for the PF to maximize the benefits of the GT implementation. This paper proposes a clustering algorithm which considers the two attributes simultaneously based on pareto optimal theory. The similarity in each attribute can be represented as two individual objective functions. Then, the resulting two objective functions are properly combined into a pareto fitness function which assigns a single fitness value to each solution based on the two objective functions. A GA is used to find the pareto optimal set of solutions based on the fitness function. A set of hypothetical parts are grouped using the proposed system. The results show that the proposed system is very promising in clustering with multiple objectives.

Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process (계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증)

  • Ha, Honggeun;Oh, Sejong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.108-118
    • /
    • 2014
  • On the optimization design problem using surrogate model, it requires considerable number of sampling points to construct a surrogate model which retains the accuracy. As an alternative to reduce construction cost of the surrogate model, Variable-Fidelity Modeling(VFM) technique, where correct high fidelity model based on the low fidelity surrogate model is introduced. In this study, hierarchical kriging model for variable-fidelity surrogate modeling is used and an optimization framework with multi-objective genetic algorithm(MOGA) is presented. To prove the feasibility of this framework, airfoil design optimization process is performed for the transonic region. The parameters of PARSEC are used to design variables and the optimization process is performed in case of varying number of grid and varying fidelity. The results showed that pareto front of all variable-fidelity models are similar with its single-level of fidelity model and calculation time is considerably reduced. Based on computational results, it is shown that VFM is a more efficient way and has an accuracy as high as that single-level of fidelity model optimization.