• Title/Summary/Keyword: single scattering model

Search Result 73, Processing Time 0.03 seconds

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

A feasibility study on photo-production of 99mTc with the nuclear resonance fluorescence

  • Ju, Kwangho;Lee, Jiyoung;ur Rehman, Haseeb;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.176-189
    • /
    • 2019
  • This paper presents a feasibility study for producing the medical isotope $^{99m}Tc$ using the hazardous and currently wasted radioisotope $^{99}Tc$. This can be achieved with the nuclear resonance fluorescence (NRF) phenomenon, which has recently been made applicable due to high-intensity laser Compton scattering (LCS) photons. In this work, 21 NRF energy states of $^{99}Tc$ have been identified as potential contributors to the photo-production of $^{99m}Tc$ and their NRF cross-sections are evaluated by using the single particle estimate model and the ENSDF data library. The evaluated cross sections are scaled using known measurement data for improved accuracy. The maximum LCS photon energy is adjusted in a way to cover all the significant excited states that may contribute to $^{99m}Tc$ generation. An energy recovery LINAC system is considered as the LCS photon source and the LCS gamma spectrum is optimized by adjusting the electron energy to maximize $^{99m}Tc$ photo-production. The NRF reaction rate for $^{99m}Tc$ is first optimized without considering the photon attenuations such as photo-atomic interactions and self-shielding due to the NRF resonance itself. The change in energy spectrum and intensity due to the photo-atomic reactions has been quantified using the MCNP6 code and then the NRF self-shielding effect was considered to obtain the spectrums that include all the attenuation factors. Simulations show that when a $^{99}Tc$ target is irradiated at an intensity of the order $10^{17}{\gamma}/s$ for 30 h, 2.01 Ci of $^{99m}Tc$ can be produced.

A Proposal on Evaluation Method of Neutron Absorption Performance to Substitute Conventional Neutron Attenuation Test

  • Kim, Jae Hyun;Kim, Song Hyun;Shin, Chang Ho;Choe, Jung Hun;Cho, In-Hak;Park, Hwan Seo;Park, Hyun Seo;Kim, Jung Ho;Kim, Yoon Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.384-388
    • /
    • 2016
  • Background: For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. Materials and Methods: In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. Results and Discussion: The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. Conclusion: It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.

Attenuation Structure of the Mt. Fuji Region, Japan (일본 후지산의 감쇠구조)

  • Chung, Tae-Woong;Lees, Jonathan M.;Yoshimoto, Kazuo;Fujita, Eisuke;Ukawa, Motoo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.97-100
    • /
    • 2008
  • Mount Fuji is the focus of intense study because of its potential hazard signaled by seismic, geologic and historical activity. Based on extensive seismic data recorded in the vicinity of Mt. Fuji, coda quality factor ($Q_c^{-1}$) using a single scattering model hypothesis, and intrinsic and scattering quality factor $(Q_i^{-1}$ and $Q_s^{-1})$ using the Multiple Lapse Time Window Analysis (MLTW) method was measured. To focus the study on the magmatic structure below Mt. Fuji, to the data were separated into two groups: a near-Fuji region of rays traversing an area with radius 5 km around the summit (R < 5 km), and a far-Fuji region of rays beyond a radius of 20 km around the summit (R > 20 km). The results of the study have a small error range due to the large data sample, showing that all $Q^{-1}$ values in near-Fuji area are greater than those of far-Fuji area, and $Q_i^{-1}$ for both the near and far-Fuji area is higher than $Q_s^{-1}$ at high frequencies. The $Q_i^{-1}$ values of the near-Fuji area are lower than those of the other volcanic areas considered, while values of $Q_s^{-1}$ are not. The low $Q_i^{-1}$ for the volcanic region of near-Fuji suggests that the magmatic activity, or percent of partial melt, at Mt. Fuji is not as active as hot spot volcanoes such as Kilauea, Hawaii.

  • PDF

Analysis of Downlink Wideband DS-CDMA Systems with Smart Antenna for Different Spreading Bandwidths in Wideband Multipath Channel

  • Jeon Jun-Soo;Kim Cheol-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.183-189
    • /
    • 2004
  • In this paper, the Eigen-RAKE receiver in wideband direct sequence code-division multiple access(DS-CDMA) systems with downlink smart antenna is analyzed for different spreading bandwidths(1.25 MHz, 5 MHz, 10 MHz) and different channel environments(macro, micro). The realistic spatio-temporal wideband multipath channel is assumed, one of which is standardized multiple-input single-output(MISO) radio channel model for WCDMA link-level simulations proposed by $3^{rd}$ generation partnership project(3GPP) contributions. We assumed spatial scattering phenomenon in which many unresolvable path signals within a limited range of spatial angle simultaneously contribute to the signals received at the receiver. Several multipaths within one chip are distinguished into each one and the first multipath components are selected as the desired signal and the others are considered self-interference. Downlink DS-CDMA system with eigenbeamformer using wider bandwidth present better performance than that using narrow bandwidth system by employing Eigen-RAKE receiver of many number of branches. It is shown that the downlink eigenbeamformer is more effective in typical urban macro cellular environments when using Eigen-RAKE receiver.

The Variation of Radiative Equilibrium Temperatures with the Ice Crystal Habits and Sizes in Cirrus Clouds (권운 내 빙정의 종류와 크기에 따른 복사 평형 온도 변화)

  • Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.427-436
    • /
    • 2010
  • The single-scattering optical properties of ice crystals in cirrus clouds by the aircraft measurement data were investigated, and the radiative equilibrium temperatures and radiative fluxes were calculated and analyzed by radiative convective model with the variations of ice crystal habits and sizes in cirrus clouds. The homogeneous cloud is assumed to be in the layer 200~260 hPa with an ice crystal content of $10gm^{-2}$ for the flux calculation. The profiles of temperature, humidity, and ozone typical of mid-latitude summer are used. The surface albedo is assumed to be 0.2 for all spectral bands and the cosine of solar zenith angles is 0.5. The result of radiative equilibrium temperature at surface was less than surface temperature of the standard atmosphere data in case of smaller effective ice crystal size and larger optical thickness. The column, aggregation and plate in 6 ice crystal habits were the most effective in positive greenhouse effect and bullet-4 was the worst in it. At the surface, the maximum difference of equilibrium temperature by 6 kinds of ice crystal habits were about 3~15 K with 30 sample aircraft measurement data.

Multi-wavelength Raman LIDAR for Use in Determining the Microphysical, Optical, and Radiative Properties of Mixed Aerosols

  • Lee, Kwon-Ho;Noh, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.91-99
    • /
    • 2015
  • The Multi-wavelength Raman LIDAR (MRL) system was developed to enable a better understanding of the complex properties of aerosols in the atmosphere. In this study, the microphysical, optical, and radiative properties of mixed aerosols were retrieved using the discrete aerosol observation products from the MRL. The dust mixing ratio, which is the proportion of dust particles to the total mixed, was derived using the particle depolarization ratio. It was employed in the retrieval of backscattering and extinction coefficient profiles for dust and non-dust particles. The vertical profiles of aerosol optical properties were then used as input parameters in the inversion algorithm for the retrieval of microphysical parameters including the effective radius, refractive index, and the single scattering albedo (SSA). Those products were successfully applied to an analysis of radiative flux using a radiative transfer model. The relationship between the MRL derived extinction and aerosol radiative forcing (ARF) in short-wavelength was assessed over Gwangju, Korea. The results clearly demonstrate that the MRL-derived extinction profiles are a good surrogate for use in the estimation of optical, microphysical, and radiative properties of aerosols. It is considered that the analytical results shown in this study can be used to provide a better understanding of air quality and the variation of local radiative effects due to aerosols.

Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures

  • Mukherji, D.;Rosler, J.;Wehrs, J.;Eckerlebe, H.;Gilles, R.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.205-219
    • /
    • 2012
  • Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the present day single crystal Ni-based superalloys. The Co-Re based alloys are designed to have very high melting range. Although Co-alloys are used in gas turbine applications today, the Co-Re system was never exploited for structural applications and basic knowledge on the system is lacking. The alloy development strategy therefore is based on studying alloying additions on simple model alloy compositions of ternary and quaternary base. Various strengthening possibilities have been explored and precipitation hardening through fine dispersion of MC type carbides was found to be a promising route. In the early stages of the development we are mainly dealing with polycrystalline alloys and therefore the grain boundary embrittlement needed to be addressed and boron addition was considered for improving the ductility. In this paper recent results on the effect of boron on the strength and ductility and the stability of the fine structure of the strengthening TaC precipitates are presented. In the beginning the alloy development strategy is briefly discussed.