Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.1.7

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information  

Kim, Seoyeon (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Lee, Yangwon (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.1, 2022 , pp. 83-101 More about this Journal
Abstract
Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.
Keywords
Atmospheric correction; Sentinel-2; 6S; AOD;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kaufman, Y.J., 1987. Atmospheric effect on spectral Signature-measurements, Advances in Space Research, 7(11): 203-206.   DOI
2 Lyapustin, A., Y. Wang, S. Korkin, and D. Huang, 2018. MODIS collection 6 MAIAC algorithm, Atmospheric Measurement Techniques, 11(10): 5741-5765.   DOI
3 Lee, K.H. and J.M. Yum, 2019. A Review on Atmospheric Correction Technique Using Satellite Remote Sensing, Korean Journal of Remote Sensing, 35(6-1): 1011-1030 (in Korean with English abstract).   DOI
4 Lee, K.S., 2019. Atmospheric correction issues of optical imagery in land remote sensing, Korean Journal of Remote Sensing, 35(6-3): 1299-1312 (in Korean with English abstract).   DOI
5 Lee, K.S., C.S. Lee, M. Seo, S. Choi, N.H. Seong, D. Jin, J.M. Yeom, and K.S. Han, 2020. Improvements of 6S Look-Up-Table Based Surface Reflectance Employing Minimum Curvature Surface Method, Asia-Pacific Journal of Atmospheric Sciences, 56(2): 235-248.   DOI
6 Kim, S., Y. Jeong, Y. Youn, S. Cho, J. Kang, G. Kim, and Y. Lee, 2021. A Comparison between multiple satellite AOD products using AERONET sun photometer observations in South Korea: Case study of MODIS, VIIRS, Himawari-8, and Sentinel-3, Korean Journal of Remote Sensing, 37(3): 543-557 (in Korean with English abstract).   DOI
7 Kneizys, F.X., L.W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Robertson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, 1996. The MODTRAN2/3 Report and LOWTRAN7 MODEL, Phillips Laboratory, Hanscom AFB, Bedford, MA, USA.
8 Kotchenova, S.Y., E.F. Vermote, R. Matarrese, and F.J. Klemm Jr, 2006. Validation of a vector version Of the 6S radiative transfer code for atmospheric correction of satellite data, Part I: Path radiance, Applied Optics, 45(26): 6762-6774.   DOI
9 Lee, K.H. and Y.J. Kim, 2008. Sensitivity of COMS/GOCI measured top-of-atmosphere reflectances to atmospheric aerosol properties, Korean Journal of Remote Sensing, 24(6): 559-569 (in Korean with English abstract).   DOI
10 Lyapustin, A., J. Martonchik, Y. Wang, I. Laszlo, and S. Korkin, 2011a. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables, Journal of Geophysical Research: Atmospheres, 116(D3).
11 Wilson, R.T., 2013. Py6S: A Python interface to the 6S radiative transfer model, Computers & Geosciences, 51(2): 166.   DOI
12 Lyapustin, A., Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, R. Levy, and J.S. Reid, 2011b. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, Journal of Geophysical Research: Atmospheres, 116(D3).
13 Nazeer, M., J.E. Nichol, and Y.K. Yung, 2014. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment, International Journal of Remote Sensing, 35(16): 6271-6291.   DOI
14 Vermote, E.F., D. Tanre, J.L. Deuze, M. Herman, and J.J. Morcette, 1997. Second simulation of the satellite signal in the solar spectrum, 6S: An overview, IEEE Transactions on Geoscience and Remote Sensing, 35(3): 675-686.   DOI
15 Xie, Y., X. Zhao, L. Li, and H. Wang, 2010. Calculating NDVI for Landsat7-ETM data after atmospheric correction using 6S model: A case study in Zhangye city, China, Proc. of 2010 18th International Conference on Geoinformatics, Beijing, China, Jun. 18-20, pp. 1-4.
16 Yu, H.J. and D.S. Kim, 2019. Necessity on the Introduction of UAV and Hyperspectral Image for Fluvial Remote Sensing, Water for Future, 52(5): 42-54.
17 Yusuf, F.R., K.B. Santoso, M.U.L. Ningam, M. Kamal, and P. Wicaksono, 2018. Evaluation of atmospheric correction models and Landsat surface reflectance product in Daerah Istimewa Yogyakarta, Indonesia, IOP Conference Series: Earth and Environmental Science, 169(1): 012004.
18 Martins, V.S., C.C.F. Barbosa, L.A.S. De Carvalho, D.S.F. Jorge, F.D.L. Lobo, and E.M.L.D.M. Novo, 2017. Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes, Remote Sensing, 9(4): 322.   DOI
19 Proud, S.R., M.O. Rasmussen, R. Fensholt, I. Sandholt, C. Shisanya, W. Mutero, C. Mbow, and A. Anyamba, 2010. Improving the SMAC atmospheric correction code by analysis of Meteosat Second Generation NDVI and surface reflectance data, Remote Sensing of Environment, 114(8): 1687-1698.   DOI
20 Rothman, L.S.,I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Muller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl. G. Tyuterev, and G. Wagner, 2013. The HITRAN2012 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 130: 4-50.   DOI
21 Jung, D., D. Jin, N.H. Seong, K.S. Lee, M. Seo, S. Choi, S. Sim, K.S. Han, and B.R. Kim, 2020. Sensitivity Analysis of Surface Reflectance Retrieved from 6SV LUT for Each Channel of KOMPSAT-3/3A, Korean Journal of Remote Sensing, 36(5-1): 785-791 (in Korean with English abstract).   DOI
22 Li, Y., J. Chen, Q. Ma, H.K. Zhang, and J. Liu, 2018. Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6): 1997-2021.   DOI
23 Goward, S.N., B. Markham, D.G. Dye, W. Dulaney, and J. Yang, 1991. Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer, Remote Sensing of Environment, 35(2-3): 257-277.   DOI