• Title/Summary/Keyword: single pulse

Search Result 831, Processing Time 0.037 seconds

Performance Analysis of Spiral Axicon Wavefront Coding Imaging System for Laser Protection

  • Haoqi Luo;Yangliang Li;Junyu Zhang;Hao Zhang;Yunlong Wu;Qing Ye
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.355-365
    • /
    • 2024
  • Wavefront coding (WFC) imaging systems can redistribute the energy of an interference laser spot on an image plane sensor by wavefront phase modulation and reduce the peak intensity, realizing laser protection while maintaining imaging functionality by leveraging algorithmic post-processing. In this paper, a spiral axicon WFC imaging system is proposed, and the performance for laser protection is investigated by constructing a laser transmission model. An Airy disk on an image plane sensor is refactored into a symmetrical hollow ring by a spiral axicon phase mask, and the maximum intensity can be reduced to lower than 1% and single-pixel power to 1.2%. The spiral axicon phase mask exhibits strong robustness to the position of the interference laser source and can effectively reduce the risk of sensor damage for an almost arbitrary lase propagation distance. Moreover, we revealed that there is a sensor hazard distance for both conventional and WFC imaging systems where the maximum single-pixel power reaches a peak value under irradiation of a power-fixed laser source. Our findings can offer guidance for the anti-laser reinforcement design of photoelectric imaging systems, thereby enhancing the adaptability of imaging systems in a complex laser environment. The laser blinding-resistant imaging system has potential applications in security monitoring, autonomous driving, and intense-laser-pulse experiments.

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

Power-Scalable, Sub-Nanosecond Mode-Locked Erbium-Doped Fiber Laser Based on a Frequency-Shifted-Feedback Ring Cavity Incorporating a Narrow Bandpass Filter

  • Vazquez-Zuniga, Luis Alonso;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.177-181
    • /
    • 2013
  • We present an all-fiberized power-scalable, sub-nanosecond mode-locked laser based on a frequency-shifted-feedback ring cavity comprised of an erbium-doped fiber, a downshifting acousto-optic modulator (AOM), and a bandpass filter (BPF). With the aid of the frequency-shifted feedback mechanism provided by the AOM and the narrow filter bandwidth of 0.45 nm, we generate self-starting, mode-locked optical pulses with a spectral bandwidth of ~0.098 nm and a pulsewidth of 432 to 536 ps. In particular, the output power is readily scalable with pump power while keeping the temporal shape and spectral bandwidth. This is obtained via the consolidation of bound pulse modes circulating at the fundamental repetition rate of the cavity. In fact, the consolidated pulses form a single-entity envelope of asymmetric Gaussian shape where no discrete internal pulses are perceived. This result highlights that the inclusion of the narrow BPF into the cavity is crucial to achieving the consolidated pulses.

Cost-Effective APF/UPS System with Seamless Mode Transfer

  • Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.195-204
    • /
    • 2015
  • In this paper, the development of a cost-effective active power filter/uninterruptible power supply (APF/UPS) system with seamless mode transfer is described. The proposed scheme employs a pulse-width-modulation (PWM) voltage-source inverter and has two operational modes. First, when the source voltage is normal, the system operates as an APF, which compensates for the harmonics and power factor while boosting the DC-link voltage to be ready for the disturbance, without an additional DC charging circuit. A simple algorithm to detect the load current harmonics is also proposed. Second, when the source voltage is out of the normal range (owing to sag, swell, or outage), it operates a UPS, which controls the output voltage constantly by discharging the DC-link capacitor. Furthermore, a seamless transfer method for the single-phase inverter between the APF mode and the UPS mode is also proposed, in which an IGBT switch with diodes is used as a static bypass switch. Dissimilar to a conventional SCR switch, the IGBT switch can implement a seamless mode transfer. During the UPS operation, when the source voltage returns to the normal range, the system operates as an APF. The proposed system has good transient and steady-state response characteristics. The APF, charging circuit, and UPS systems are implemented in one inverter system. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype APF/UPS system rated at 3 kVA.

Proposal and Analysis of Distributed Reflector-Laser Diode Integrated with an Electroabsorption Modulator

  • Kwon, Oh Kee;Beak, Yong Soon;Chung, Yun C.;Park, Hyung-Moo
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.459-468
    • /
    • 2013
  • A novel integrated laser, that is, a distributed reflector laser diode integrated with an electroabsorption modulator, is proposed to improve the output efficiency, single-mode stability, and chirp. The proposed laser can be realized using the selective metalorganic vapor phase epitaxy technique (that is, control of the width of the insulating mask), and its fabrication process is almost the same as the conventional electroabsorption modulated laser (EML) process except for the asymmetric coupling coefficient structure along the cavity. For our analysis, an accurate time-domain transfer-matrix-based laser model is developed. Based on this model, we perform steady-state and large-signal analyses. The performances of the proposed laser, such as the output power, extinction ratio, and chirp, are compared with those of the EML. Under 10-Gbps NRZ modulation, we can obtain a 30% higher output power and about 50% lower chirp than the conventional EML. In particular, the simulation results show that the chirp provided by the proposed laser can appear to have a longer wavelength side at the leading edge of the pulse and a shorter wavelength side at the falling edge.

Simultaneous and Coded Driving System of Ultrasonic Sensor Array for Object Recognition in Autonomous Mobile Robots

  • Kim, Ch-S.;Choi, B.J.;Park, S.H.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2519-2523
    • /
    • 2003
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a corner, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding ultrasonic signals, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, the current presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

  • PDF

The design of a 32-bit Microprocessor for a Sequence Control using an Application Specification Integrated Circuit(ASIC) (ICEIC'04)

  • Oh Yang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.486-490
    • /
    • 2004
  • Programmable logic controller (PLC) is widely used in manufacturing system or process control. This paper presents the design of a 32-bit microprocessor for a sequence control using an Application Specification Integrated Circuit (ASIC). The 32-bit microprocessor was designed by a VHDL with top down method; the program memory was separated from the data memory for high speed execution of 274 specified sequence instructions. Therefore it was possible that sequence instructions could be operated at the same time during the instruction fetch cycle. And in order to reduce the instruction decoding time and the interface time of the data memory interface, an instruction code size was implemented by 32-bits. And the real time debugging as single step run, break point run was implemented. Pulse instruction, step controller, master controllers, BIN and BCD type arithmetic instructions, barrel shit instructions were implemented for many used in PLC system. The designed microprocessor was synthesized by the S1L50000 series which contains 70,000 gates with 0.65um technology of SEIKO EPSON. Finally, the benchmark was performed to show that designed 32-bit microprocessor has better performance than Q4A PLC of Mitsubishi Corporation.

  • PDF

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

An Electronic Starter Using MOSFET for Fluorescent Lamps (MOSFET를 사용한 형광램프용 전자식 스타터)

  • Jung, Y.C.;Gwak, J.Y.;Lee, D.H.;Park, G.C.;Yeo, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2075-2077
    • /
    • 1997
  • An electronic starter using MOSFET is developed to take advantage of ideal preheating and starting features which can extend the lifetime of fluorescent lamps. The preheating curcuit of the developed electronic starter is consisted of three parts - a full wave rectifier curcuit, an FET switching curcuit, and a timer curcuit for the gate switching. The curcuit allows sufficient preheating current flow before the starting to protect lamp filaments, nevertheless it shortens the Preheating time and enables a single pulse ignition at the peak level of the line voltage. Experimental results show that fluorescent lamps of 20-40W range can be initiated within rather short time of $1{\sim}1.5sec$ with preheating current of 0.6A. The electronic starter withstands more than 70.000 cycles switchings without noticeable blackening due to anode spot. These features provide Proper evidences for the advantage of direct replacement with the new starter.

  • PDF

The Current and Power Waveform Improvement of a $3{\Phi}$ Induction Motor with LC Filter Driven by a Digital Bridge Inverter (디지탈 브리지형 인버터로 구동되는 3상유도전동기의 LC 필터에 의한 전류 및 전력 파형 개선)

  • Chung, J.Y.;Park, J.G.;Kang, C.N.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.553-555
    • /
    • 1996
  • This paper concerns with a method to improve the current and power waveforms of the variable speed $3{\Phi}$ AC motor system driven by the single-pulse PWM, and the current waveforms and $3{\Phi}$ power waveforms are analyzed by FFT under various running conditions. By the performance analysis through the experiments, the following results have been obtained. AC source of pseudo sine waveform can be obtained from the modulated alternating square voltage by means of the well designed LC filter. It is confirmed that current waveforms and $3{\Phi}$ power waveforms can be improved by utilizing the high order low pass LC filter than that of lower order. Especially, current waveforms and $3{\Phi}$ power waveforms tan be much improved at low frequency domain. $3{\Phi}$ power waveforms have a smatter ripple and bigger power by utilizing the high order low pass LC filter than that of lower order. Also, the running condition of $3{\Phi}$ AC motor is good at low frequency domain.

  • PDF