• 제목/요약/키워드: single electron transfer

검색결과 105건 처리시간 0.029초

혼합 발광층을 이용한 백색 전계발광소자의 발광특성 (White Light-Emitting Electroluminescent Device with a Mixed Single Emitting Layer Structure)

  • 김주승;서부완;구할본;조재철;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.606-609
    • /
    • 1999
  • We fabricated white light-emitting diode which have a mixed single emitting layer containing poly(N-vinylcarbazole), trois(8-hydroxyquinoline)aluminum and poly(3-hexylthiophene) and investigated the emission properties of it. It is possible to obtain a blue light from poly(N-vinylcarbazole). green light from tris(8-hydroxyquinoline)aluminum and red light from poly(3-hexylthiophene). The fabricated device emits white light with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to Alq₃ and P3HT resulted in decreasing the blue light intensity from PVK. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

Synthesis and Characterization of 2, 6-Di-(4'-Methyl Phenyl) Pyrylium Fluoroborate and Perchlorate in Single Step Salts Using 4'-Methyl Acetophenone

  • Wie, Jin-Hyeong;Hong, Young-Min;Kim, Hyun-Ook;Kim, Kyung-Hoon;Cho, Sung-Il
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.13-20
    • /
    • 2012
  • Due to its high conductivity, pyrylium has been frequently used in electron transfer reactions or in the synthesis of various organic materials. It has also been used as a sensor material. Traditionally, the compounds have been synthesized using various methods; mostly in a multiple steps. In this study, two pyrylium salts, 2, 6-di-(4'-methylphenyl) pyrylium fluoroborate and perchlorate were synthesized. The synthesis of these products was confirmed by 1H-NMR, LC/TOF-MS and FT-IR analyses while their photo-properties were analyzed using UV/VIS spectrophotometry. In addition, the electron transfer capacities of the salts were analyzed with a conductivity meter, it was found that their electron conductivities were high. When the synthesized compounds were dissolved in acetone, a green fluorescent material was observed to form. The fluorescent material can be used as a sensitizer in the electrical industry.

Photoelectron Transport Across Phospholipid Liposomes Pigmented by Anthracene and Naphthalene Derivatives

  • Lee, Yong-Ill;Kwon, Hwang-Won;Shin, Dae-Hyon;Yoon, Min-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권2호
    • /
    • pp.120-124
    • /
    • 1986
  • In order to investigate effective solar energy conversion system, the light-induced electron transfer reactions have been examined across single-lamellar liposomes incorporated organic photosensitizers such as anthracene and naphthalene derivatives. We have observed photosensitized reduction of methyl viologen (1,1'-dimethyl-4,4'-$bipyridinium^{2+}$) dissolved in the exterior aqueous phase of the pigmented phospholipid liposomes when EDTA, as electron donor, is dissolved in the enclosed aqueous phase of the liposomes. The anthroyl stearic acid incorporated in the hydrophobic bilayer of liposomes leads to much less quantum yield for the photosensitized reduction of $MV^{2+}$ than the anthracene carboxylate incorporated in the outer hydrophilic layer. However, ${\beta}$-carotene with anthroyl stearic acid incorporated into the bilayer enhances the quantum yield significantly (${\Phi}{\simeq}0.2-0.3$), preventing the reverse reaction of electron transfer ($MV^+_\ {\rightarrow}MV^{2+}$) so that it might be useful for solar energy conversion into chemical energy. A naphthalene derivative, octadecyl naphthylamine sulfonic acid incorporated into the outer layer of liposomes results in less efficiency of $MV^{2+}$ reduction than anthroyl stearic acid. These results have been also tested with respect to lipid components of liposomes.

Photoaddition Reactions of Silyl Ketene Acetals with Aromatic Carbonyl Compounds: A New Procedure for β-Hydroxyester Synthesis

  • Yoon, Ung-Chan;Kim, Moon-Jung;Moon, Jae-Joon;Oh, Sun-Wha;Kim, Hyun-Jin;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1218-1242
    • /
    • 2002
  • Photochemical reactions of aromatic carbonyl compounds with silyl ketene acetals have been explored. Irradiation of acetonitrile or benzene solutions containing aryl aldehydes or ketones in the presence of silyl ketene acetals is observed to promo te formation of ${\beta}-hydroxyester$, 2,2-dioxyoxetane and 3,3-dioxyoxetane products. The ratios of these photoproducts, which arise by competitive single electron transfer (SET) and classical Paterno-Buchi mechanistic pathways, is found to be dependent on the degree of methyl-substitution on the vinyl moieties of the ketene acetals in a manner which reflects expected alkyl substituent effects on the oxidation potentials of these electron rich donors. An analysis of the product distribution arising by irradiation of a solution containing butyrophenone (6) and the silyl ketene acetal 9, derived from methyl isobutyrate, provides an estimate of the rate constants for the competitive Norrish type Ⅱ, SET and Paterno-Buchi processes occuring. Finally, sequences involving silyl ketene acetal-aryl aldehyde or ketone photoaddition followed by 2,2-dioxyoxetane hydrolysis represent useful procedures for Claisen-condensation type, ${\beta}-hydroxyester$ synthesis.

Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

  • Park, Hea Jung;Sung, Nam Kyung;Kim, Su Rhan;Ahn, So Hyun;Yoon, Ung Chan;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3681-3689
    • /
    • 2013
  • This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation $Hg^{2+}$ and $Pb^{2+}$ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

탄소나노튜브 대면적 어셈블리를 통한 고감도-고선택성 과산화수소 센서 개발 (Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film)

  • 이동욱;안희호;서병관;이승우
    • 센서학회지
    • /
    • 제30권4호
    • /
    • pp.229-235
    • /
    • 2021
  • This study presents a simple approach for the assembly of a free-standing conductive electronic nanofilm of single-walled carbon nanotubes (SWNTs) suitable for enzymatic electrochemical biosensors. A large-scale SWNT electronic film was successfully produced by the dialysis of p-Terphenyl-4,4''-dithiol (TPDT)-treated SWNTs. Furthermore, Horseradish peroxidase (HRP) was immobilized on the TPDT-SWNT electronic film, and the enzymatic detection of hydrogen peroxide (H2O2) was demonstrated without mediators. The detection of H2O2 in the negative potential range (-0.4 V vs. Ag/AgCl) was achieved by direct electron transfer of heme-based enzymes that were immobilized on the TPDT-SWNT electronic film. The SWNT-based biosensor exhibited a wide detection range of H2O2 from 10 µM to 10 mM. The HRP-doped SWNT electronic film achieved a high sensitivity of 342 ㎛A/mM·cm2 and excellent selectivity against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, and acetaminophen.

Fundamental Metrology by Counting Single Flux and Single Charge Quanta with Superconducting Circuits

  • Niemeyer, J.
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2002
  • Transferring single flux quanta across a Josephson junction at an exactly determined rate has made highly precise voltage measurements possible. Making use of self-shunted Nb-based SINIS junctions, programmable fast-switching DC voltage standards with output voltages of up to 10 V were produced. This development is now extended from fundamental DC measurements to the precise determination of AC voltages with arbitrary waveforms. Integrated RSFQ circuits will help to replace expensive semiconductor devices for frequency control and signal coding. Easy-to-handle AC and inexpensive quantum voltmeters of fundamental accuracy would be of interest to industry. In analogy to the development in the flux regime, metallic nanocircuits comprising small-area tunnel junctions and providing the coherent transport of single electrons might play an important role in quantum current metrology. By precise counting of single charges these circuits allow prototypes of quantum standards for electric current and capacitance to be realised. Replacing single electron devices by single Cooper pair circuits, the charge transfer rates and thus the quantum currents could be significantly increased. Recently, the principles of the gate-controlled transfer of individual Cooper pairs in superconducting A1 devices in different electromagnetic environments were demonstrated. The characteristics of these quantum coherent circuits can be improved by replacing the small aluminum tunnel Junctions by niobium junctions. Due to the higher value of the superconducting energy gap ($\Delta_{Nb}$$7\Delta_{Al}$), the characteristic energy and the frequency scales for Nb devices are substantially extended as compared to A1 devices. Although the fabrication of small Nb junctions presents a real challenge, the Nb-based metrological devices will be faster and more accurate in operation. Moreover, the Nb-based Cooper pair electrometer could be coupled to an Nb single Cooper pair qubit which can be beneficial for both, the stability of the qubit and its readout with a large signal-to-noise ratio..

  • PDF

Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

  • Tojo, Tomohiro;Kang, Cheon Soo;Hayashi, Takuya;Kim, Yoong Ahm
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.60-65
    • /
    • 2018
  • Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.

Acetonitrile 용액중에서 살충제 O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorothioate (Fenitrothion)의 전기화학적 환원 (On the Electrochemical Reduction of O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorthioate (Fenitrothion) Pesticide in Acetonitrile Solution)

  • 김일광;김윤근;천현자
    • 대한화학회지
    • /
    • 제32권3호
    • /
    • pp.186-194
    • /
    • 1988
  • 계면활성 micelle을 형성하는 acetonitrile 용액을 O,O-dimethyl-O-(3-methyl-4-nitrophenyl)-phosphorothioate (Fenitrothion)의 전기화학적 환원을 direct current 및 differential pulase polarography, cyclic voltammetry 그리고 controlled potential coulometry 방법으로 연구하였다. Fenitrothion의 환원과정은 1단계로 4 전자 이동에 의한 부분 가역적 전자이동 화학반응(EC, EC)기구로 O,O-dimethyl-O-(3-methyl-4-hydroxyaminophenyl)-phosphorothioate를 형성하고, 더 높은 음전위에서 2 전자 이동에 따른 양성자 반응으로 phosphorus 원자와 phenoxy group의 단일 결합이 끊어지면서 주 생성물인 p-amino-m-cresol과 dimethyl thiophosphinic acid를 생성하였다. Sodium lauryl sulfate micelle 용액에서 polarography 환원파는 전체적으로 억제 되었으며 특히 1차 환원파는 음이온 micelle의 선택적 작용으로 2단계로 분리되었다.

  • PDF

Electrochemical Studies of Immobilized Laccases on the Modified-Gold Electrodes

  • Yoon Chang-Jung;Kim Hyug-Han
    • 전기화학회지
    • /
    • 제7권1호
    • /
    • pp.26-31
    • /
    • 2004
  • The direct electrochemical studies of four laccases (plant and fungal laccases) have been investigated on a gold electrode functionalized with a new tether of 2.2'-dithiosalicylic aldehyde. Results from these studies indicate that the redox potential of the active site of plant laccase from Rhus vernificera is shifted to a more negative value(255 mV versus SCE) than that of fungal laccase from Pyricularia oryzae (480 mV versus SCE). Mechanistic studies indicate that the reduction of type-1 Cu precedes the reduction of type-2 and type-3 Cu ions when the electrode is poised initially at different potentials. Also a new tether, 2.2'-dithiosalicylic aldehyde, has been used to study the redox properties of two laccases (LCCI and Lccla) covalently attached to a gold electrode. An irreversible peak at 0.47V vs. SCE is observed in the cyclic voltammorams of LCCI. In contrast, the cyclic voltammograms of LCCIa contain a quasi-reversible peak at 0.18V vs. SCE and an irreversible peak at 0.50V vs. SCE. We find that the replacement of the eleven amino acids a the C-terminus with a single cysteine residue $(i.e., \;LCCI{\rightarrow}LCCIa)$ influences the rate of heterogeneous electron transfer between an electrode and the copper containing active sites $(K_{het}\;for\;LCCI=1.0\times10^{-2}\;s^{-1}\;and\;K_{het}\;for\;LCCI_a= 1.0\;times10^{-1}\;s^{-1}\'at\;0.18V\;versus\;SCE\;and\;4.0\times10^{-2}\;s^{-1}\;at\;0.50V\; versus\;SCE)$. These results show for the first time that the change of the primary structure of a protein via site-directed mutagenesis influences both the redox potentials of the copper ions in the active site and the rate of heterogeneous electron transfer.