• Title/Summary/Keyword: single domain particle

Search Result 25, Processing Time 0.016 seconds

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

A Study on the Magnetic Properties of the Sm2Fe17Nx-type Material Produced by a Combination of HDDR Process and Nitrogenation

  • Pan, Y.R;Kwon, H.W
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.99-104
    • /
    • 1998
  • The $ Sm_2Fe_{17}N_x $materials were prepared by the combination consisting of the HDDR (hydrogenation, disproportionation, desorption, and recombination) process and nitrogenation or by the conventional way consisting of nitrogenation only, and the magnetic and thermomagnetic properties of the materials were investigated. The magnetic characterisation of the prepared $ Sm_2Fe_{17}N_x $ materials was performed using a VSM. Thermal stability of the materials was evaluated using a DTA under Ar gas atmosphere. The thermomagnetic characteristics of the materials were examined using a Sucksmith-type balance. The previously HDDR-treated Sm2Fe17parent alloy was found to be nitrogenated more easily compared to the ordinary $ Sm_2Fe_{17}N_x $alloy. The $ Sm_2Fe_{17}N_x $ material produced by the combination method showed a high coercivity (12.9 kOe) even in the state of coarse particle size (around 60 ${\mu}{\textrm}{m}$). It was also revealed that the $ Sm_2Fe_{17}N_x $ material produced by the material produced by the combination showed an unusual TMA tracing featured with a low and constant magnetisation at lower temperature range and a peak just before the Curie temperature. This thermomagnetic characteristic was interpreted in terms of the competition between two counteracting effects; the decrease in magnetisation due to the thermal agitation at an elevated temperature and the increase in magnetisation resulting from the rotation of magnetisation of the fine grains comparable to a critical single domain size due to the decreased magnetocrystalline anisotropy at an elevated temperature.

  • PDF

Fabrication of a high magnetization YBCO bulk superconductor by a bottom-seeded melt growth method

  • Hong, Yi-Seul;Park, Soon-dong;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.19-23
    • /
    • 2019
  • A large grain YBCO bulk superconductor is fabricated by the top-seeded melt growth (TSMG) method. In the TSMG process, the seed crystal is placed on the top surface of a partially melted compact and therefore the seed crystal is frequently tilted during the melt process due to intrinsic unstable nature of Y211 particle +liquid phase mixture. In this work, we report the successful growth of single-domain YBCO bulk superconductors by a bottom-seeded melt growth (BSMG) method. Investigations on the trapped magnetic field and the microstructures of the synthesized specimens show that a bottom-seeded melt growth method has hardly affected on the crystal growth behavior, the microstructure development and the magnetic properties of the large grain YBCO bulk superconductors. The bottom-seeded melt growth method is clearly beneficial for the stable control of seed orientation through the melt process for the fabrication of a large grain YBCO bulk superconductor.

Spatial Analysis of Wind Trajectory Prediction According to the Input Settings of HYSPLIT Model (HYSPLIT 모형 입력설정에 따른 바람 이동경로 예측 결과 공간 분석)

  • Kim, Kwang Soo;Lee, Seung-Jae;Park, Jin Yu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.222-234
    • /
    • 2021
  • Airborne-pests can be introduced into Korea from overseas areas by wind, which can cause considerable damage to major crops. Meteorological models have been used to estimate the wind trajectories of airborne insects. The objective of this study is to analyze the effect of input settings on the prediction of areas where airborne pests arrive by wind. The wind trajectories were predicted using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The HYSPLIT model was used to track the wind dispersal path of particles under the assumption that brown plant hopper (Nilaparvata lugens) was introduced into Korea from sites where the pest was reported in China. Meteorological input data including instantaneous and average wind speed were generated using meso-scale numerical weather model outputs for the domain where China, Korea, and Japan were included. In addition, the calculation time intervals were set to 1, 30, and 60 minutes for the wind trajectory calculation during early June in 2019 and 2020. It was found that the use of instantaneous and average wind speed data resulted in a considerably large difference between the arrival areas of airborne pests. In contrast, the spatial distribution of arrival areas had a relatively high degree of similarity when the time intervals were set to be 1 minute. Furthermore, these dispersal patterns predicted using the instantaneous wind speed were similar to the regions where the given pest was observed in Korea. These results suggest that the impact assessment of input settings on wind trajectory prediction would be needed to improve the reliability of an approach to predict regions where airborne-pest could be introduced.

A Study on the Fabrication for High Quality Ferrite Plastic Magnets (고품위 페라이트 본드자석 제조에 관한 연구)

  • 신용진;문형욱;진성빈;정왕일
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.440-446
    • /
    • 1997
  • This research has been performed for the fabrication of high quality ferrite plastic magnet. The magnetic properties of S $r_{5.9}$F $e_2$ $O_3$ ferrite bonded magnets by injection moulding with a variety of applied magnetic field were investigated. 0.3wt% CaCO3, 0.2wt% $SiO_2$, 0.5wt% $Al_2$ $O_3$and 0.5wt% N $a_2$ $SiO_3$are added in order to improve the magnetic properties of Sr-ferrite plastic magnets during the powder fabrication. For carbon coating on chemical compound specimen, 5wt% polyvinyl alcohol is added, and then calcinated under $N_2$ environment of 12$25^{\circ}C$. The particle size is distributed from 0.9~1.2${\mu}{\textrm}{m}$ which approximates to the single domain. The obtained Sr ferrite powder is well mixed with silane coupling and calcium stearate of 1wt%. Nest, the specimen is pelleted after kneading each of them with polyamidel2 as a binder. When the temperature of injection and mould were 25$0^{\circ}C$ and 8$0^{\circ}C$ respectively at injection pressure of 200kgf/$\textrm{cm}^2$, the degree of orientation was 85.3% under the applied magnetic field of 12kOe. As the results, when the packing density of Sr ferrite powder was 90wt%, the magnetic properties of Sr ferrite bonded magnet were follows : $_{B}$ $H_{c}$=2.41kOe, Br=3.1kG, (BH)$_{max}$=2.21MgOe. Especially, the Sr-ferrite bonded magnet with 10wt% N $d_2$F $e_{14}$B additive were as follows : $_{B}$ $H_{c}$=2.57kOe, Br=3.14kG and (BH)$_{max}$=2.39MGOe.GOe.GOe.GOe.e.

  • PDF