• Title/Summary/Keyword: single chain

Search Result 982, Processing Time 0.028 seconds

Chemisorption of Thiolated Listeria monocytogenes-specific DNA onto the Gold Surface of Piezoelectric Quartz Crystal

  • Ryu, Sung-Hoon;Jung, Sang-Mi;Kim, Namsoo;Kim, Woo-Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.163-166
    • /
    • 2001
  • Piezoelectric (PZ) crystal biosensor system was used to detect the DNA of food pathogenic Listeria monocytogenes. L. monocytogenes-specific DNA was multiplied via the polymerase chain reaction using LM1 oligonucleotide (5'-TTACGAATTAAAAAGGAGCG-3') and LM2 oligonucleotide (5'-TTAAATCAGCAGGGGTCTTT-3') as primers. DNA fragment of 161 bp, which was specific only for L. monocytogenes, was observed. To obtain a large amount of single-stranded DNA containing an SH group used for coupling to the gold electrode chemisorptively, LM1 oligonucleotide containing a mercaptohexyl group was utilized as a single strand PCR primer. The PCR product was immobilized onto the gold electrode of PZ crystal, and hybridization was monitored in quartz crystal microbalance (QCM) system by injecting the antisense single-stranded DNA of 161 nucleotides obtained via the single strand PCR using the unmodified LM2 primer. Approximately 70 Hz of frequency drop was observed in the QCM system in the case of two consecutive injections of $5{\mu}g$ of the antisense single-stranded DNA.

  • PDF

Time-to-Digital Converter Implemented in Field-Programmable Gate Array using a Multiphase Clock and Double State Measurements (Field Programmable Gate Array 기반 다중 클럭과 이중 상태 측정을 이용한 시간-디지털 변환기)

  • Jung, Hyun-Chul;Lim, Hansang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.156-164
    • /
    • 2014
  • In a delay line type of a time-to-digital converter implemented in Field Programmable Gate Array, the timing accuracy decreases for a longer carry chain. In this paper, we propose a structure that has a multi-phase clock and a state machine to check metastability; this would reduce the required length of the carry chain with the same time resolution. To reduce the errors caused by the time difference in the four delay lines associated with a four-phase clock, the proposed TDC generates a single input pulse from four phase clocks and uses a single delay line. Moreover, the state machine is designed to find the phase clock that is used to generate the single input pulse and determine the metastable state without a synchronizer. With the measurement range of 1 ms, the measured resolution was 22 ps, and the non-linearity was 25 ps.

Association between Single Nucleotide Polymorphisms of the Fibrinogen Alpha Chain (FGA) Gene and Type 2 Diabetes Mellitus in the Korean Population

  • Hwang, Joo-Yeon;Ryu, Min-Hyung;Go, Min-Jin;Oh, Berm-Seok;Cho, Yoon-Shin
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • Fibrinogen alpha chain (FGA), a subunit of fibrinogen, might be a potential player for type 2 diabetes mellitus (T2DM), since the plasma levels of fibrinogen is known to be related to the incidence of T2DM. To elucidate the potential role of FGA in T2DM, we investigated whether FGA genetic variations are relevant in T2DM in the Korean population. Seven FGA single nucleotide polymorphisms (SNPs) were genotyped in Ansung and Ansan cohorts (474 T2DM subjects and 470 normal controls) in Korea. The association between SNPs and T2DM was determined by logistic regression analysis. Genetic relevance of SNPs to T2DM-related phenotypes was investigated by multiple linear regression analysis. Statistical analysis revealed that among seven FGA SNPs, significant associations with T2DM were observed in FGA rs2070011 (p=0.013-0.034, OR=0.72${\sim}$0.79), rs6050 (p=0.026${\sim}$0.048, OR=1.24${\sim}$1.37), and rs2070022 (p=0.016${\sim}$0.039, OR=0.70${\sim}$0.72). Two SNPs, rs2070011 and rs6050, also showed significant association with T2DM-related phenotypes such as triglyceride (p=0.005${\sim}$0.011 for rs2070011 and p=0.003${\sim}$0.008 for rs6050), total cholesterol (p=0.01 for rs2070011 and p=0.024 for rs6050) and fasting glucose (p=0.035${\sim}$0.036 for rs2070011 and p=0.048 for rs6050) in 470 normal controls. Our association study implies that FGA might be an important genetic factor in T2DM pathogenesis in the Korean population by affecting plasma lipid and glucose levels.

Design of ESPAR Antenna using Patch Antenna and Performance Analysis of MIMO Communications (패치안테나를 이용한 ESPAR 안테나 설계와 MIMO 통신 성능 분석)

  • Keum, Hong-Sik;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.579-584
    • /
    • 2014
  • In this paper, we propose beamsapce MIMO(mulitple input multiple output) system using patch ESPAR(Electronically Steerable Parasitic Array Radiator) antenna. When using conventional monopole ESPAR antenna, we have advantages cost of hardware and power consumption of RF cirsuit because of single RF chian. But it is difficult to apply to small portable mobile device. Therefore we design patch ESPAR antenna in order to reducing volume and analyze performance of BS MIMO system that is able to MIMO communication with single RF chain. In This paper, we confirm beam pattern of designed patch ESPAR antenna is steered as ${\pm}15^{\circ}$ elevation angle. Furthermore, we design BS MIMO system using this ESPAR antenna and confirm BER performance of this system.

High-Level Expression and Characterization of Single Chain Urokinase-type Plasminogen Activator(scu-PA) Produced in Recombinant Chinese Hamster Ovary(CHO) Cells

  • Kim, Jung-Seob;Min, Mi-Kyung;Jo, Eui-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.117-127
    • /
    • 2001
  • The high-level expression of a human single chain urokinase-type plasminogen activator (scu-PA) was achieved by employing a methotrexate (MTX)-dependent gene amplification system in Chinese hamster ovary (CHO) cells. By cotransfecting and coamplifying a scu-PA expression plasmid and dihydrofolate reductase (DHFR) minigene, several scu-PA expressing CHO cell lines were selected and gene-amplified. These recombinant cell lines, NGpUKs, secreted a completely processed scu-PA of 54 kD and up to 60mg/L was accumulated in the culture medium when they were adapted to an optimal MTX concentration. Over 95% of the scu-PA expressed was secreted in the culture medium and identified having the proper function of a plasminogen activator when activated by plasmin. Based on a genomic Southern analysis, a representative subclone, MGpUK-5, exhibited MTX-dependent scu-PA gene amplification, plus the initial single-copy gene of scu-PA eventually turned into about 150 copies of the amplified gene of scu-PA after gradual adaptation to 2.0$\mu$M of MTX. Meanwhile, the transcripts kof the scu-PA gene increased, although -early saturation of transcription was identified at 0.1$\mu$M of MTX. The scu-PA production by the MGpUK-5 subclone also increased relative to the gene amplification and increased transcripts, however, the relationship was not linearly proportional. Accordingly, since the MGpUK cell lines expressed elevated levels of enzymatically active scu-PA, these cell lines could be applied to the largescale production of scu-PA.

  • PDF

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

Precise Delay Generation using a Delay Chain Locked by Multiple Clock Period (다중 클락 주기의 지연체인을 이용한 정밀한 지연발생 회로)

  • Park, Jun-Young;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.50-56
    • /
    • 1999
  • This paper presents a new technique for generating precise clock delays. The technique can obtain finer timing resolution less than the gate delay of the delay chain by locking in multiple clock period. Using this technique, a 250ps of timing resolution could be achieved from a 750ps delay of the single delay stage in a DLL(Delay Locked Loop) structure. The delay chain of the proposed circuit is locked on three times of the clock period and a finer delay resolution than the absolute gate delay is achieved and verified through the simulation.

  • PDF

Iron-fortified recombinant Saccharomyces cerevisiae producing Sus scrofa ferritin heavy-chain recovers iron deficiency in mice

  • Lim, Hwan;Kim, Jong-Taek;Kim, Myoung-Dong;Rhee, Ki-Jong;Jung, Bae Dong
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.263-268
    • /
    • 2012
  • In this study, we produced iron-fortified yeast (Saccharomyces cerevisiae) producing Sus scrofa ferritin heavy-chain to provide iron supplementation in anemic piglets. We determined whether iron-ferritin accumulated in recombinant yeasts could improve iron deficiency in mice. C57BL/6 male mice exposed to Fe-deficient diet for 2 weeks were given a single dose of ferrous ammonium sulfate (FAS), ferritin-producing recombinant yeast (APO), or APO reacted with iron ($Fe^{2+}$) (FER). The bioavailability of recombinant yeasts was examined by measuring body weight gain, hemoglobin concentration and hematocrit value 1 week later. In addition, ferritin protein levels were evaluated by western blot analysis and iron stores in tissues were measured by inductively coupled plasma spectrometer. We found that anemic mice treated with FER exhibited increased levels of ferritin heavy-chain in spleen and liver. Consistently, this treatment restored the iron concentration in these tissues. In addition, this treatment significantly increased hemoglobin value and the hematocrit ratio. Furthermore, FER treatment significantly enhanced body weight gain. These results suggest that the iron-fortified recombinant yeast strain is bioavailable.

Performance Evaluation on the Delay and the Throughput between the Stations on the Interconnected LANs (상호접속된 근거리 통신망 환경에서의 단말간 전송 성능 평가)

  • Yoe, Hyun;Lim, Jae-Hwan;Choi, Seung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.4
    • /
    • pp.336-345
    • /
    • 1992
  • In this paper, the performance evaluation on the throughput and the delay between station under the interconnected LANs environments is studied. The connection is formed through bridges. Interconnected system is modelled as single-chain and multiple-chain closed queueing networks. For performance enaluation the iteration algorithm, which is based on the MVA(Mean Value Analysis)is proposed, Various system parameters, such as chain population interconnected communication link capacity, and service times of several queues, are used for the investigation of their influence of the station to station performance, Transport and MAC layers are mainly taken into consideration for the layer modeling. The analysis is shown as a graph by computer programming.

  • PDF

A STUDY ON MUTATIONS OF P53 TUMOR SUPPRESSOR GENE IN ORAL TUMORS (구강종양에서 p53 종양억제 유전자의 돌연변이에 관한 연구)

  • Joo, Seong-Chai;Pyo, Sung-Woon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • Nowadays, there are a lot of evidence that mutation of the p53 tumor suppressor gene is one of the most common genetic abnormalities in neoplastic progression. In this study, we analyzed 20 specimens of oral tumors(squamous cell carcinoma 14 cases, ameloblastoma 3 cases, adenoid cystic carcinoma 2 cases, malignant schwannoma 1 case)using polymerase chain reaction and direct sequencing which used an automated DNA sequencer and software for detection of mutations. Polymerase chain reactions were performed with 4 sets of primers encompassing exon 5, 6, 7, 8, and direct sequencing method was employed. The results were as followings. 1. We detected 10 point mutations out of 20 specimens (50%). 2. The genetic alterations included 7 mis-sense mutations resulting in single amino acid subtitutions, 2 silent mutations, 1 non-sense mutations encoding a stop codon. 3. Mutations were mostly in exon 7(7 out of 10 mutations, 70%) and involved codons 225, 234, 235, 236, 238, 247. 4. Therse were 4 cases of $T{\rightarrow}A$ transversion, 2 cases of $C{\rightarrow}A$ transversion, $A{\rightarrow}G$ transition, 1 case of $C{\rightarrow}G$, $T{\rightarrow}G$ transversion respectively. 5. We could find out point mutations more conveniently using PCR - Automated Direct Sequencing method.

  • PDF