• 제목/요약/키워드: simultaneous-successive

검색결과 25건 처리시간 0.025초

애니매이션이 이해와 흥미에 미치는 효과 (The Effect of Animation on Comprehension and Interest)

  • Kim, Sung-il;Whang, Sang-min;Barbara Tversky;Julie Morrison
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2002년도 춘계학술대회
    • /
    • pp.85-91
    • /
    • 2002
  • This study was conducted to investigate the interaction effects of various presentation types of graphics and the individual differences in need for cognition on comprehension, interestingness, and motivation. The depiction of the operation of a bicycle tire pump was presented in one of the following conditions, (a) simultaneous presentation, (b) successive presentation, (c) self-pace presentation, (d) animation. For younger students, animated graphics are rated more enjoyable and motivating only when they are low in NFC. If they are high in NFC, animated graphics are not more effective than static graphics in terms of comprehension, interest, and motivation. On the other hand, for older students, self-paced static graphics are more interesting and enjoyable than the animated graphics regardless of their NFC score. These results suggest that the animated graphics are not always beneficial for loaming and motivation.

  • PDF

증류탑의 실시간 최적화 (On-line optimization of a distillation column)

  • 최용진;노균;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.229-233
    • /
    • 1990
  • A new on-line optimization technique of a distillation column is presented. The equation decoupling method and the simultaneous solution method are combined to simulate the distillation process. The storage requirement is small enough to run on a PC. A improved successive quadratic programming is used to find the optimum operating conditions. The optimizer is intensively tested by using the dynamic simulator, SPEEDUP. After this, the technique is applied to a binary distillation column that treats methanol and water.

  • PDF

실내 복도 환경에서 선분 특징점을 이용한 비전 기반의 지도 작성 및 위치 인식 (SLAM with Visually Salient Line Features in Indoor Hallway Environments)

  • 안수용;강정관;이래경;오세영
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.40-47
    • /
    • 2010
  • This paper presents a simultaneous localization and mapping (SLAM) of an indoor hallway environment using Rao-Blackwellized particle filter (RBPF) along with a line segment as a landmark. Based on the fact that fluent line features can be extracted around the ceiling and side walls of hallway using vision sensor, a horizontal line segment is extracted from an edge image using Hough transform and is also tracked continuously by an optical flow method. A successive observation of a line segment gives initial state of the line in 3D space. For data association, registered feature and observed feature are matched in image space through a degree of overlap, an orientation of line, and a distance between two lines. Experiments show that a compact environmental map can be constructed with small number of horizontal line features in real-time.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

A Comprehensive Study for Two Damage Sites of Human Hair upon UV-B Damage

  • Song, Sang-Hun;Son, Seongkil;Kang, Nae Gyu
    • Korea Journal of Cosmetic Science
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Protection mechanisms for skin damage of ultraviolet (UV) absorbers in personal care products for protection against UV are well studied, but not for hair protection. The purpose of this study is to describe and compare the changes of physical property produced in human hair by doses of the UV-B exposure causing protein degradation. To observe the change of physical properties in hair, the experimental intensity of UV-B exposure has been established on the basis of statistical data from official meterological administration as daily one hour sunlight exposure for two weeks. Polysilicone-15, ethylhexyl methoxycinnamate (OMC), and octocrylene were employed for UV-B absorber, and those were treated to hair swatch by rubbing wash through shampoo and conditioner. Bending rigidity displayed kinetically successive reduction at high doses of UV exposure up to the 8,000 s, and exhibited different level at each sample of UV-B absorber. However, the values of Bossa Nova Technologies (BNT) for shinning factor were already saturable at the 2,000 s exposure except that treated with polysilicone-15. The differential scanning calorimetry (DSC) to measure a strength of inner protein produces a successive reduction of enthalpy as like a reduction of bending rigidity upon UV exposure. Surface roughness from lateral force microscope (LFM) acquired immediately after UV exposure show a saturable frictional voltage which has been also found in a saturable BNT data as the time of UV exposure increases. Through researching the DSC and the LFM, shinning of hair was much correlated to the protein damage at the surface, and bending rigidity could be regulated by the protein structural damage inside hair. Therefore, the optimization of efficient strategy for simultaneous prevention of hair protein on the surface and internal hair was required to maintain physical properties against UV.

초등학교 학생의 정보 처리 유형과 인지 양식에 따른 과학 문제 해결 (Degree of Science Problem Solving by the Information Processing Types and Cognitive Styles of Elementary School Students)

  • 신애경;최병순
    • 한국과학교육학회지
    • /
    • 제20권1호
    • /
    • pp.155-165
    • /
    • 2000
  • 이 연구는 초등학교 6학년 235명을 대상으로 학생의 정보 처리 유형과 인지 양식에 따른 과학 문제 해결 정도를 알아보는 것을 목적으로 하였다. 이 연구의 결과는 다음과 같다. 첫째, 학생들은 두 가지 정보처리 방식에서 높은 점수를 받을수록 과학 성취 문항과 창의적 문제해결 문항을 잘 해결하였다. 그리고 동시적 정보 처리 검사에서 높은 점수를 받을수록 과학개념 이해 문항을 잘 해결하였다. 둘째, 학생들이 장독립적 성향이 높을수록 과학 성취 문항과 창의적 문제해결 문항을 잘 해결하였다. 그리고 과학개념 이해 문항의 해결에서는 특히 좀 더 높은 장독립적 성향이 요구되었다. 마지막으로, 정보 처리 유형에 따른 인지 양식의 분포에 통계적으로 유의미한 차이가 있었다. 학생들이 두 가지 정보 처리 방식에서 높은 점수를 받을수록 그들의 인지 양식은 장독립적 성향이 높았다.

  • PDF

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Improvement of a Fungal Strain by Repeated and Sequential Mutagenesis and Optimization of Solid-State Fermentation for the Hyper-Production of Raw-Starch-Digesting Enzyme

  • Vu, Van Hanh;Pham, Tuan Anh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.718-726
    • /
    • 2010
  • A selected fungal strain, for production of the raw-starchdigesting enzyme by solid-state fermentation, was improved by two repeated sequential exposures to ${\gamma}$-irradiation of $Co^{60}$, ultraviolet, and four repeated treatments with Nmethyl-N'-nitrosoguanidine. The mutant strain Aspergillus sp. XN15 was chosen after a rigorous screening process, with its production of the raw-starch-digesting enzyme being twice that of usual wild varieties cultured under preoptimized conditions and in an unsupplemented medium. After 17 successive subculturings, the enzyme production of the mutant was stable. Optimal conditions for the production of the enzyme by solid-state fermentation, using wheat bran as the substrate, were accomplished for the mutant Aspergillus sp. XN15. With the optimal fermentation conditions, and a solid medium supplemented with nitrogen sources of 1% urea and 1% $NH_4NO_3$, 2.5 mM $CoSO_4$, 0.05% (v/w) Tween 80, and 1% glucose, the mutant Aspergillus sp. XN15 produced the raw-starch-digesting enzyme in quantities 19.4 times greater than a typical wild variety. Finally, XN15, through simultaneous saccharification and fermentation of a raw rice corn starch slurry, produced a high level of ethanol with $Y_{p/s}$ of 0.47 g/g.

Novel SSF Process for Ethanol Production from Microcrystalline Cellulose Using the $\delta$-Integrated Recombinant Yeast, Saccharomyces cerevisiae L2612$\delta$GC

  • Cho, Kwang-Myung;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.340-345
    • /
    • 1999
  • A novel simultaneous saccharification and fermentation (SSF) process from the microcrystalline cellulose to ethanol was developed by using $\delta$-integrated recombinant cellulolytic Saccharomyces cerevisiae L2612$L2612\deltaGC$, which can utilize cellulose as carbon and energy sources. The optimum amount of enzymes needed for the efficient conversion of cellulose to ethanol at $30^{\circ}C$ was determined with commercial cellulolytic enzymes. By fed-batch cultivation, the heterologous cellulolytic enzymes were accumulated up to 42.67% of the total cellulase and 29% of the $\beta$-glucosidase needed for the efficient SSF process. When this $\delta$-integrated recombinant yeast was applied to the successive SSF step for ethanol production, 20.35 g/l of ethanol was produced after 12 h from 50 g/l of microcrystalline cellulose. By using this novel SSF process, a considerable amount of commercial enzymes was reduced.

  • PDF

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.