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Abstract

A constitutive model on orthotropic thermo-elasto-viscoplasticity for fiber-reinforced
composite materials is illustrated, and their thermomechanical responses are predicted with
the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted
with the multipartite matrix method as the constitutive model. Basic assumptions based
upon the composite micromechanics are postulated, and the strain components of thermal
expansion due to temperature change are included in the formulation. Also, more than
two sets of mechanical variables, which represent the deformation states of multipartite matrix,
can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with
any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates
the complex processes for developing an orthotropic viscoplastic theory.

The governing equations based on fully-coupled thermomechanics are derived with
constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary
conditions, the initial-boundary value problem is completely set up. As a tool of numerical
analyses, the finite element method is used with isoparametric interpolation for the
displacement and the temperature fields. The equation of motion and the energy conservation
equation are spatially discretized, and then the time marching techniques such as the Newmark
method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear
simultaneous equations, a successive iteration algorithm is constructed with subincrementing
technique. As a numerical study, a series of analyses are performed with the main focus
on the thermomechanical coupling effect in composite materials. The progress of viscoplastic
deformation, the stress-strain relation, and the temperature history are carefully examined

when composite laminates are subjected to repeated cyclic loading.

Key Words : Unmixing-mixing scheme, Thermo-elasto-viscoplasticity,
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Introduction

Advanced composite materials have successfully been used in severe thermal and/or mechanical
environment for various field’s applications [1]. Recently, to take an example, the interest in hypersonic
vehicles has brought attention to the advanced materials because structural components are operated
under extremely severe aerothermal conditions such as aerodynamic heating [2]. Thermoplastic
and metal-matrix composites may experience an appreciable amount of viscoplastic deformation,
especially at high temperatures.

In general, the inherent anisotropy of composites increases the difficulty in describing the
viscoplastic deformation. Up to date, many kinds of constitutive theories have been suggested to
simulate the viscoplastic response of the anisotropic materials. Most of the theories were modified
and extended from the classical plasticity models or the unified viscoplastic models for materials
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by introducing macroscopic composite mechanics[3-7]. On the other hand, there have been several
efforts made, based on micromechanics which predicts the overall behavior of composite from the
individual properties of constituent materials [8-11]. Recently, Kim et al. proposed an unmixing-mixing
concept and considered general procedure to systematically analyze the viscoplastic behavior of
composites [12,13]. The scheme was also extended by the multipartite matrix method which enables
one to handle some microstructural effect due to heterogeneity [13].

In principle, to solve the complex thermomechanical problems, all governing equations in
the related continuum mechanics must be solved simultaneously because the mechanical fields and
the thermodynamic fields are coupled interactively. Accordingly, as summarized in Table. 1, there
are three types of mathematical formulation that depend on the treatment of thermomechanically-coupled
field variables.

Table. 1 Three types of thermomechanical formulation

Coupling Type (interrelation)

 Meehanical Field> 1. Uncoupled (x)

.stress, -strain,. 2. One-way coupled (<) temperature,
viscoplastic strain, 3. Fully coupled () heat flux, energy,
displacement, etc. ’ Y P - entropy, etc.

Theoretical foundations on the thermomechanical coupling phenomena in solid bodies originated
from the Duhamel’s [14] and the Neumann’s [15] paper. It is recognized that the coupling between
mechanics and thermodynamics has a weak effect on the behavior of elastic materials, and one-way
coupled formulation is sufficient for the thermoelastic problems. But the coupling effect is not
always negligible for viscoplastic materials, especially when the materials are repeatedly used under
cyclic loads. With the development of viscoplastic deformation, generally, a certain portion of
mechanical energy is converted to heat, thus resulting in an irreversible rise in temperature. In
result, mechanical variables such as displacement and stress are also changed interactively. Up
till now, numerical analyses with the fully-coupled formulation have been performed by several
researchers [16-22]. The quantitative prediction of thermomechanical coupling effect in the viscoplastic
composites is necessary to accurately analyze the behavior of composite structures operated under
intense surrounding conditions.

This paper deals with an issue of the thermomechanically-induced coupling effects on the
response of fiber-reinforced composites. The unmixing-mixing scheme is utilized to describe the
orthotropic viscoplastic characteristics of the composite materials. The equation of motion and the
energy conservation equation are considered together with the constitutive arrangement by the
unmixing-mixing concept. By considering auxiliary conditions, the initial-boundary value problem
is completely set up. In computational aspects, the governing equations are reformulated with the
finite element method. The derived nonlinear equations are fully discretized in incremental forms.
As a numerical study, a series of analyses are performed with the focus on the coupling effect
in the metal matrix composite. The development of viscoplastic deformation, the stress-strain relation,
and the temperature change are carefully examined when the composite laminates are cyclically
subjected to static and dynamic loads.

Orthotropic Thermo-Elasto-Viscoplastic Model

Basic Micromechanics

The extended unmixing-mixing scheme with the multipartite matrix method [13] is applied
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to describe the thermo-elasto-viscoplastic behavior of composite materials. Some basic equations,
which govern the micromechanical states of fiber and matrix, are required for the development
of this scheme and they are briefly summarized in this subsection.

(a) Force equilibrium relation

N
o = Vindm + 2 VimaOtmn (12)
- e _ Gme _ . _ Timp (1)
2 bup D im12 Pimer
ry = e o Timhz 0 Timyie (10
Drsie D tmyn2 D (myn2

where V denotes the volume fraction. Subscript [f] means the fibers part, and subscript [mi]
the i-th matrix part of the N partitioned parts, as shown Fig.1. Another subscripts 1 and 2 denote
the principal material coordinates. Also, p2 and pl2 are the stress variation factors for the corresponding

composite phase.
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(b) Kinematic observation for strain rates

. iy
e = emt &gm

: tr .
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+ ;V[m.]q[m.]IZ(.re[m,]lZ-*. Yimnz + Pimiiz)

where superscripts e, t, and p represent the elastic, thermal, and viscoplastic components,
respectively. The strain contribution factors g2 and q12 are introduced with the p2 and p12 to account

(2c)
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for the three-dimensional microstructural effects which result from the composite heterogeneity and
the kinematic compatibility on interfaces.
(c) Constitutive relation for elastic strains

. 1 - Vs
€ = &= 0 - 0 (3a)
#3)] E.y JUn E; .y TUR
. 1 - Visnz -
€| = T 0 — o (3b)
U E,p W2 T Ey, U
Ye = 1 e (3e)
Girne
. 1 - Yiml -
Emt = T O(mn — Om (42)
{m;1 Elm [m1 E{ [m;12
. 1 - Yiml -
Emr = E, Cime T E,, (4b)
. 20 +v) . 1 -
Yimme = Eim T 2 Gy © L2 (4b)
(d) Constitutive relation for thermal strains
em = aynb+,  Emp = aupbs, v =0 )
Emn = Um0+, Emn= Ambs,  Yiwm=0 ©
where @ means the coefficient of thermal expansion, and §. is the change from base temperature
8o (8=0,+8.). It is assumed that 8./8, is an infinitesimal of the same order, O(¢), as the
infinitesimal strain tensor &£.
(e) Constitutive relation for matrix viscoplastic strain
Any well-known isotropic viscoplastic theories, which are reviewed in the books by Miller
[23] and Lubliner [24], may be used as the matrix viscoplastic model. In this paper, the widely-used
constitutive theory proposed by Bodner et al. [25,26] is adopted. The summarized expressions for
this rule consist of the flow law, the kinetic equation, and the evolution equations of internal variables
(here, no directional hardening is considered).
€tm) = AStm) = "[Ulmfl‘%tf(dtmil)l] @
R R ZZn
DP o, = Ler et = D2 __Lma @
(ml2 = 9 E(m: €lm)) o XP| " 3nyn )
. Z [mi ] - ZZ n
Zimg = M(Zi=Z 1) Ony’ €lma— 412 (—Zl ®
Zimali=o = % (10)

where J; is the second invariant of the deviatoric stress S, and Z a scalar-valued internal
state variable characterizing the isotropic hardening effect. D,, Zo, Z1, Z2, m1, A1, r1, and n in
Egs. (8)-(10) are the viscoplastic constants for the isotropic matrix.

Derived Unmixing-Mixing Equations
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Kim and Shin [13] derived a set of the unmixing-mixing equations by rearranging Egs. (1)-(6).
In this place, only the equations needed in subsequent calculations are rewritten in the appropriate
forms.

(a) Strain rate equation

e = @4+ e
- . N . an
= Ao+ a 0+ + E)Blm‘] Gp[m.]
where A is the typical elastic compliance tensor under plane-stress condition, and a the thermal
expansion tensor. The fourth-order tensor B[mi] relates the viscoplastic deformation of matrix to
the overall viscoplastic response of composite by linear transformation. The deformed state in the

matrix is represented with a set of variables for the N-parts of the matrix. The matrix forms of
these tensors in the 1-2 coordinates are

(oY= too,rpl T, {e}=legrlT (12)
B S )
E, E,
|l ve _L 13
[A] B, E, 0 (13a)
1
{a}) =l @;a,0 )7 (13b)
E
Lim
E, 0 0
E ., (13c)
[Bimal = Vimy|@tmazvim ~ Viz E, 9im22 0 ‘
0 0 4min

The newly appeared notations in Eq.(13) are defined in the following Eqgs.(18)-(21).
(b) Fiber-microstress equation

) . . N .
o1 = Cinot+ B + 2 Dy €mn (4

Three terms in the right-hand side of Eq. (14) stand for the fiber-microstress contributed from
the overall loading, the thermal expansion, and the matrix viscoplasticity, respectively. The tensors
included in the above equations can also be represented by matrix notations.

Euu VYim

E| E, (D212 Eim) = Pimizimi Esn) - 0
(153)
[Cal = 0 bisr2 0
0 0 D
E; 1B
{8yt = — V[ml_mfru Lagp—ag. 0017 (15b)
E E[m] 0 0
[Disy] = Vimg —ME 0 0 0 {15¢)
! 0 0 0

(c) Matrix-microstress equation
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. ) . N ;
Otm) = Cim1 0+ Bim0s + 20 Dimy €1y (16)
Ep E{
E, Pmn¥im T Vi E, 0
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0 0 Dimirz
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' B 0 00

(d) Rule of mixtures - elastic modulus
The overall elastic constants in Egs.(13), (15) and (17) can be expressed in terms of its constituent
properties.

E, = Visi Ein + Viwg Eim (182)

= - A
E, = Yntunaue gt Vi M

T VirsVini U By @ime + Drmpdire) Visne Vim

E E (18b)
— 2 Lrm _ 2 Ly |1
PrpliseYine g - T PeVinE U R,
2 iyt 2
T Vi) (BPrmp@imp = Pdimp) U[m]—El:
vie = Vinpupvime t VimPimiVim (18¢)
Vi = Vinauyevisie ¥ Vi domeVim (18d)
1 _y 1 ~ 1
= b q + Vi, 0q (18¢)
Gy U1Pun e TG (ml P02 G

These equations are derived with the context of the unmixing-mixing scheme, and regarded
as the extension of the traditional rule of mixtures illustrated in the textbooks on composite mechanics
[27,28].

(e) Rule of mixtures - coefficient of thermal expansion

- Eiyn Eim
o = VinTg et VnTg @m (192)
a; = Vinaypaynt Viml dme s

E (19b)
K _ L —
T VinVis\ e Tg, T T dtne YT R, )(“[/n @(m))

(f) Other notation and constraint
In the above equations, the following abbreviated notations are used for convenience.

N
Vi = 2 Vimds Vit Vi = 1 @0
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N
Pmr = 2 Vlm.li’lm.n/ Vim @ta)
N
Ump = 2 Vlm.lq[nl.n/ Vim @15
— N
Pagmr = 2, V[m.lﬁlm.lzﬂlm.lz/ Vim @ie)
. N
Paimz = 2, V[m.]p(m.]lzq[m.]lz/ Vim @19

In addition, the constraint requirements that the averaged states of the stress components
should be equilibrated in the composite material yields the following relationships in terms of volume
fractions and stress variation factors.

N
Vintye + 23 Vimabime = 1 (222)
N
Vintie + 23 Vispbimnz: = 1 (22)
The reciprocal theorem in elasticity must be satisfied as well, so yielding
Vg = @3
Governing Equations and Auxiliary Conditions
In this section, governing equations are briefly summarized in tensor notation. As shown in
Fig.2, the thin laminates which infinitesimally deform in a plane are considered.
Adiabatic B.C.
Temperature B.C. Surface
h Surface .
4
o y
X
Traction B.C. pisplacement B.C.
Surface Surface
Fig.2 Geometric configuration of a composite laminate and its boundaries
(a) Equation of motion
v-a+f=p’i¢ 24

(b) Energy conservation equation
By applying the principles of thermodynamics (energy conservation and entropy production)
[29], Eq.(25) is derived for a class of viscoplastic composites.

poc, = —0a:A ' (e—€)+ ¢ta:e’+ Vv -(x-V4,) (25)
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The terms in the right-hand side are the contribution to thermal energy by the reversible
thermoelastic deformation, the dissipative viscoplastic deformation, and the irreversible heat conduction,
respectively.

(c) Strain-displacement relation

€ = %[V*u-f- (v -u)T]
{(d) Constitutive equation ; unmixing-mixing scheme
The following are the extended unmixing-mixing equations illustrated in the previous section

; that is, the strain rate equation, the overall viscoplastic flow law, the fiber stress equation, and
the matrix stress equation.

e =Ao+ab,+ &
i N -
ED = ;lB[m'] E[m.]
. ] . N -,
%51 = Cis16 + By + 2 Dyigyelu,

; . . N .
Oim) = Cimy0 + B0y + ;D[m,-,]e[ﬂm,]
(e) Constitutive equation ; Bodner-Partom theory

1 lem!-l )"]
[m,]

- D
) o _1
Elm Vimiz exp[ 2 ( 3Jim12

S[m‘,] = Oim,) — —3L tr(‘7[»!;])1

Jimaz = ‘stth:S[m.-l

. Z[m,-]_ZZ 4
Zimy = (21—~ Zim) O © Efma — Alll(—T

The detailed information on unknowns and equations is listed in Table. 2. By prescribing
auxiliary conditions together, the initial-boundary value problem is completely defined.
(a) Initial condition ; macromechanical variables

6li=g=0, €l,.y=0, &l,.,=0
ulieg=0, ul,oq=0, 6,0,00=0
(b) Initial condition ; micromechanical variables
Zimili=o=Zy, other variables =0
(c) Displacement boundary condition
¥ =1u on Iy
(d) Traction boundary condition

n-0 =t on I'n

(26)

@7

28

29

(30)

(€3Y

(32

(33)

(34)

(3%

(36)

3N

(3%

(39
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(e) Temperature boundary condition
6+ = B.'. on I [
(f) Adiabatic boundary condition

(x - v8,)m =0 onl,

Table. 2 List of unknowns and equations

2002. 11. Vol.3 No.1 / 53

. Unknowns
Eqn of Motion ; 24 2
lgdacro:rLevel Variable 3 Energy Conservation Eqn ; 29 1
tress Tensor — - -
Strain Tensor 3 Stram‘—Dl.splacement Relation ; 26)] 3
Displacement Vector 2 Constitutive Eqn
Temperature 1 (Unmixing-Mixing Scheme)
Viscoplastic Strain Tensor 3 Strain Rate Eqn ;@n) 3
Viscoplastic Flow Law ; 28)) 3
Micro-Level Variable Flbe‘: Stress Eqn ;29 3
Fiber Stress Tensor 3 Matrix Stress Eqn ; (30)] Nx3
Matrix Stress Tensor Nx3 | Constitutive Eqn
Matrix Deviatoric Stress Tensor | Nx4 | (Bodner-Partom Theory)
Matrix Viscoplastic Strain Tensor] Nx3 | Flow Law and Kinetic Eqn ; (31)1 Nx3
Matrix Deviatoric Stress Invariant| N Deviatoric Stress Definition ; (32)] Nx4
Matrix Internal State Variable N Stress Invariant Definition ; 33)| N
Evolution Eqn ; (3] N
Total — 15+Nx12 Total — 15+Nx12

Variational Formulation and Finite Element Approximation

Equation of Motion

Variational formulation starting from goveming differential equations is performed in order
to solve the fully-coupled problems. The principle of virtual work is applied to the equilibrium

state with the virtual displacement which vanishes on I'y.

[, (v o+T—pu) oud@ ~ [ (n-0~"t) Sudlr = 0

The displacement and the temperature are spatially interpolated with the isoparametric finite

elements.

(z,y;6)) _
{Z(;;;t)} = [Hy(x, I{U)}

g,(x,y;t)

p——

Yo (%, ¥5t)
0. (x,y:t) = [Hg(x,y)1{6(8)}

ey(x,y;t)} = [By(x,»)1{U(1)}

(40)

41)

42

(43)

@“49

45)
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200
ax+ (x,y;¢)

20
a; (x,;t)

= [Bg(x,»)1{O(5)} (46)

By using the divergence theorem, the semi-discretized form of the equation of motion can
be derived as follows :

(MU} + {Fy} = {Ry} = {0} @7
where
(M) %fgp[HU]T[HU] dQ 48
{Fy} # fQ[BU]T{a} dQ (49)
(Ry) = [ [H,)(7)d@ + [ HT(k) ary 50)

To obtain a fully-discretized approximation, the Newmark integration (constant average
acceleration) method [30] is applied to Eq.(47). It is noted that the temperature vector is a secondary
independent variable in the above equations.

(trod + —Aztm)avy = (+9Ry} = ('Fy)

5D
+ (461046} + (4P + (M) 'U) + (1)

[K,) [ [B,TIA)'[B,) 42 (52
[46) = [ [By1T[A] (e} [Hel a2 3
{4P,) %fQ[BU]T[A]‘l{Ae’} ple) 4

{4e?) = f:“”{'e"} dr - (55)

Energy Conservation Equation
Next, the Galerkin method is used for the restatement of the energy conservation equation.

fgpcui9+6‘6d.Q —fgv (x- v0,)80dRQ

.. ; (56)
= — [ 6a:A (e~ e)80d2 + [ Eo:e?s0d0
2 Q
Through the procedure of finite element discretization, the following is obtained.
[Ma]{B} + [Kel{®) = {Eg} + {Pg) 7

where

[Me] = | pc,[He)"[He dQ 9
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[Kel % [ [Bol7[x1[Bs]dQ
(Eo) =~ [ 0[H) () T[A]" ({8}~ (&) dR

(Po) 2 [ £[Hg)™(0)T(¢*} d
Eq.(57) is fully discretized with the Crank-Nicolson technique [31] in a time domain.

(1M1 + 4L 1K,1)146) = (4Eg) + (aPg) — 2t1K,) {16}
(4Eg) 2 — [ [HelT(a)T[A]"} {42} a2
(4Po} = [ E[HoI™(4w") d@
(ge) = [ o(er- (&N ar
awy = [ o)y ar

Computational Algorithm

The resulting equations, Eq.(51) and (62), are nonlinear with the fully-coupled terms. Therefore,
the incremental solutions, {AU} and {4#}, are obtained through an iteration process. The fast
convergence depends largely on how accurately the nonlinear terms in Eq.(55), (65), and (66) are
calculated. Because of the numerically stiff phenomenon of the viscoplastic rate equations, a
subincrementing technique is adopted at each Gauss integration point [32]. The computational algorithm
for the finite element code is as follows :

(a) Initialize all the variables at =0, and determine At.

(b) Apply the load increment, and start the iteration stage with i=0.

(c) Assemble the matrices in Eq.(51), and solve it to obtain {“VAU}.

(d) Calculate the nonlinear terms in the energy equation by the subincrementing technique.

(Ggzy = [T WDey— (D)) ar

. t+ 4t . oy
(gw?) = f' (Dg}T{De?) gr

(e) Assemble the matrices in Eq.(62), and solve it to obtain {#V48}.
(f) Calculate the nonlinear term in the equation of motion by the subincrementing technique.

(Ogery = [0y ar

(g) Check the convergence criteria with the relative errors.
(h) If it converges, update all the variables to the current values. Return to (b).
(i) If it diverges, increase the iteration index i by one. Return to (c).

With a slight modification, the above algorithm can be applied to other problems. For example,
if the steps of (d) and (e) are skipped, the uncoupled structural analysis can be performed. And
by neglecting (c) and (f), the equation of unsteady heat conduction for composite laminates can
be solved.

(59)

(60)

(61)

(62)

(63)

64)

(65)

(66)

(67)

(68)

(69)
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Numerical Examples and Discussion

Metal Matrix Composite

The metal matrix composite, SCS-6/Ti-15-3 (silicon-carbide fiber, titanium alloy matrix), is
selected as the standard material system in numerical analyses. The material properties are chosen
at a high temperature, 815°C [22]. The fiber volume fraction is 0.6, and the unmixing-mixing
model has one part of fiber and two parts of matrix (Vmi) = 0.3, Vjmzy = 0.1). The typical stress-strain
curves are shown in Fig.3.
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Fig.3 03-¢2 and Ti2-Y12 curves for SCS-6/Ti-15-3

Uniform Field Problem ; Off-Axis Specimen

As shown in Fig.4., we consider a fiber-reinforced composite subject to uniaxial loading
at angle A to the fiber direction. Since the macroscopically homogenized composite is under static
uniform loads, the equation of motion is not solved. And the heat conduction term resulting from
the temperature gradient can be neglected in the energy equation.

352

Fig.4 Insulated composite specimen
with off-axis angle A

Through the transformation equations for expressing the stresses and strains in the 1-2 coordinates
in terms of the stresses and strains in an x-y coordinates, the rate equations for unknown quantities
Ox, €y, Vxy, and 8, are derived. Eq.(70) is a system of nonlinear, first-order differential equations.
One-step forward Euler method appears to be suitable for the simple and efficient time integration,
provided the time step is finely divided.
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I/Ex 0 0 a, bx éx— exp
Yyl E, 1 0 —ae, ey | = &
_77xy.x/ Ex ._0 _1 _axy Y,y Y:y ™
0 a, @4y PC || g, — a6, + (@ el + a,e)) + Lo,e?
The various components in Eq.(70) can be written as follows.
115 = %cos‘ﬂ + (é;—%m)cosz/l sin?A + —g‘.—sin“/l (71a)
x 1 1 1 2
Yo _ Y 4 . g __(_1__1____1_) 27 i 2
E E, (cos?A + sin‘A) \5 + E "Gy ) s Asin?A (71b)
Tys _ (_2_ ﬂu___l_) 3 si _(_Z_ 2 __1_) 3 .
E, E, + E, Cor cos°A sin A E, + E, Gy cos A sin®A (71c)
@, = a,cos’d + a,sin?A (72a)
a, = a,sin’A + a,cos?A (729)
a,, = 2(a,— a;) cosd sinA (72¢)
a, = 00(”1@11+ 0'2012) (73a)
a, = 0,(a;Qu+ Q) (73b)
@, = a,c0s’A + a,sin?i (74a)
@, = asin? + a,cos?2 (74b)
2, = (a,— @) cosAsinA (74c)

where Qi1, Q12, and Q2 are the so-called reduced stiffness components.

Fig.5 illustrates the typical results of the temperature variations up to 1,200s for the off-axis
angle A=30°. The £ma varies from 0.003 to 0.006. With the increased £max, the variations in
the temperature curves are noticeable. The general trends of temperature variations depend mainly
on the hysteretic areas in the stress-strain curves, which is a measure of plastic deformation in
one cycle. The values of the temperature change §. are over 10°C after ten cycles in case of
€ max=0.006.
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e 004
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Fig.5 0. time histories for various tmex levels
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To examine the thermomechanical coupling effects on the temperature changes quantitatively,
the relations 8+ |max - 8+|min versus A are graphed with various &£m.y levels in Fig.6. In the figure,
6+)max is the maximum temperature change in the entire loading history up to N.=20, and 8+|min
the minimum. N.=20 means the well-developed stage at which the dissipated plastic work plays
a dominant role.

8. Imax-8. Jain_(°C) 25
Emx LEVEL [
eoees 003
oveee 004 f
reees (005 F20
xwens 006 |

F15
10
t Fig.6 O.¢imaxO+imin VS A {N=20)
5
wf
wi
A (deg)

T .'.....:0
0 15 30 45 60 75 90

Nonuniform Field Problem ; Quasistatics

The intial-boundary value problems with nonuniform field variables are examined with the
developed computer code. As shown in Fig.7, the square laminate has the length a, and the hole
is located in the center with the radius R. The stacking sequence of the composite laminate is
[0/£45/90]s, and the traction loads are along the x-axis. Considering the geometric and material
symmetry, a quarter of the laminate is discretized by 1680 triangular finite elements.

Yy

Qf |
i

Curved boundary

“ Straight boundary -

a

Fig.7 Configuration of the composite laminate with a hole
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Traction force is tension, unloading, compression, and unloading (T,U,C,U) during tc for one
cycle, as shown in Fig.8. The upper bound of the cyclic load is 225MPa and the lower bound
-225MPa. A total of five examples are tested to compare the fully-coupled quasistatic solutions
with each other, as listed in Table. 3. The size of the laminate is a=4.0m and R=1.0m in STAT1~STAT3,
a=0.4m and R=0.1m in STAT4, and a=0.04m and R=0.0lm in STATS. In addition, the load period
is different in each case.

1 T, tensile Ioadmg '
o compressive Ioadlng
iU ; unloading

AN A
”’V VEEVEY

Ist cycle : 2nd cycle : 3rd cycle : 4th cycle f 5th cycle ;

Cyclic Load

Time

Fig.8 Time history of cyclic loading applied to a composite laminate

Table. 3 Numerical tests for quasistatic loading

te [s] Omax_[MPal a [m] R [m]
U STATL 4.00 +225 4.00 1.00
_STAT2 40.0 1225 4.00 1.00
U STAT3 400. +205 4.00 1.00
STAT4 4.00 +225 0.40 0.10
- STATS 4.00 +295 0.04 0.01

Contour maps are drawn to view the distribution of viscoplastic work accumulated in the
laminae. Fig.9 is the developed work during 0~ 1s. The maximum value is predicted at the upper
boundary of the hole in the 90° ply. Note that the dissipated viscoplastic work is one measure
of the heating effect owing to thermomechanical coupling. It is expected that the coupling effect
may become apparent around the upper boundary of the hole.

Ply angle : 0 degree Ply angle : 45 degree Ply angle : 90 degree
o0 o8 L. B ¥ 2% 0.0 0.5 10 15 29, 0.0 0.5 1.0 18 20,

By

. Contdur Label [MPa}

Fig.9 Developed viscoplastic work during 0~1s (1st cycle) ; STATY
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To examine the thermomechanical coupling effect, the temperature changes from the base
temperature 8, are predicted at a boundary point during the first four cycles. In Fig.10, the cycle
number is a dimensionless parameter of the current time ¢ with reference to ¢.. Because the laminates
deform viscoplastically around the point, the upper bounds of temperature values increase gradually,
except in STATS.

Temperature Change (°C]

Cycle Number
Fig.10 Temperature change vs. cycle number (t/t.) up to the 4th cycle at (r,A)=(R,90°)

Fig.11 shows the distribution of the temperature change 8+ along hole boundary. The patterns
of the temperature distribution are different for each problem. They depend mainly on heat conduction
term in the energy conservation equation. If the load is applied at a higher rate, the viscoplastic
work will be accumulated on a local area with less heat conduction. Therefore, the local heating
effect lasts as in STAT1 or STAT2. The maximum temperature change is about 30°C. When
the number of the repeated cycles is increased, the heating effect will be considerable. In contrast
to these cases, the heating effect is relatively weak in STAT3 because of slower loading. By drawing
a comparison between STAT1, STAT4, and STATS5, one can see that the laminate size also plays
an important role. The coupling effect is negligible for a small laminate as in STATS, because
the thermal energy easily spreads to the surrounding.

T
I Cycle20 ¢ 28
o 24
é_{ 1
o 12
g" »
2 16
(8]
g 12 T T 12
E s " Cyded’ I I s
g. (m:u. co?npres:non): 3
E L R R IR A/ 14
- .
0 L R R [
' '
a | [ 1 L | YN R | 1 4

[1] 15 30 45 60 75 20
Lambda [degree]

Fig.11 Distribution of temperature change at ¥/t.=3.75 and 19.75 (max. compression)
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Nonuniform Field Problem ; Dynamics

When the ¢, has the same order as the fundamental period ¢, for the initial elastic state
of the composite laminate, dynamic analyses must be performed including the inertia term.
As shown in Fig.12, consider a laminate supported by rigid walls with the dimension, a=1.0m,
5=0.09m, and £=0.0lm. The stacking sequence is [0/£45/90)s. Only the right half is discretized
with 480 triangular elements. The point force is cyclically applied with the range of tPrax, a$
shown in Fig.8.

% o

Fig.i2 Configuration of the composite laminate supported by rigid walls

The fundamental period can be determined by solving the generalized eigenvalue problem
of the free vibration for the elastic deformation.

[Ku]{¢} = wz[Mu]{¢} 75

Because only the lower modes need to be checked, the natural mode shapes for the four
modes are shown in Fig.13 with their periods 21/@. Note that the fundamental period is equal
to 1.566ms.

N

ist mode 2nd mode
period=1.5862E-3 period=.32794E-3

4th mode

3rd mode
period=.15287E-3 pericd=.14102E-3

Fig.13 Natural mode shapes and periods of the composite laminate

Two examples are solved to show the coupled dynamic behavior of the viscoplastic composite.
Because the fundamental mode is important in this case, t. is changed with reference to #.. In
DYNAL, the load cycle ¢, is 7.831ms, five times of the ., with Puoax=195.8kN. In DYNAZ2, the
t. is equal to ¢, with Pnix=35.24kN. In numerical experiments, the relative errors for convergence
are fixed to 0.02%, and the subdivision number for the subincrementing technique is 100.

DYNAT1 results are presented in Fig.14~Fig.16. In Fig.14, the deflection at the center of
laminate is plotted with the cycle number. In the legend of the figure, TE. designates thermo-elasticity,
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and T.E.VP. thermo-elasto-viscoplasticity. The curve of quasistatic (Q) T.E.VP. is also drawn to
observe the characteristics of dynamic (D) T.E.-VP. The deflection curve of Q.T.E.VP. linearly
increases or decreases with constant amplitude, which implies that no viscoplastic deformation occurs.
The result of D.T.E. means that the deflection steadily grows owing mainly to the component of
the first natural mode (the component of the first mode oscillates about five times per cycle).
But the curve of D.T.E.VP. is a contrast to these curves.

0.03 ¥ v T T T
Load Period = 7.831 ms . ' H H

,
Dynamic T.E. H H 4
0.02 Y H . . H

Dynamic T.E.VP. ! : 1 ' é
e Quasistatic T.E.VP. ; ; ] : ' J b
0.01 e o | TR ‘ ‘ ‘ 1 l
44' ll .!‘ 11(‘ " “ H ‘f
0.00 " o."‘ hl“ ," 'll n(|i i l N R
il 3

‘5 ‘: )'l “ rl |l|' | ' ""

Deflection [

Hxy) ¥ (0,00} P
I TN TN S SRS N S

:
0.03 i

Cycle Number
Fig.14 Deflection vs. cycle number (t / t.) up to the 10th cycle at (x,y)=(0,0) ; DYNA1

Though the difference between them is not obvious at the initial stage, the difference becomes
outstanding after the third cycle as the viscoplastic deformation develops. Note that the viscoplastic
deformation provides the source of damping in the thermomechanical system, so the range of deflection
is confined within about 0.01m.

To visualize the viscoplastic deformation in the laminate, as shown in Fig.15, the contour
maps of viscoplastic work per unit volume are drawn at ¢=10t.. A considerable amount of the
irreversible work is developed in the upper and the lower area of the center and the right boundaries,
mainly because the normal stress O, is large in those regions. The other parts of the laminate
deform elastically. The viscoplastic deformation dissipates mechanical energy into thermal energy,
so the dynamic motion of the laminate does not diverge.

End of 10th cycle

Fig.15 Developed viscoplastic work at t=10.0t. ; DYNA1

The response of temperature change due to the coupling effect is shown in Fig.16. The
result of D.T.E. shows that the phases of heating and cooling are repeated proportionally to the
deflection without any viscoplastic effect. The heating effect is serious in the D.T.E.VP. case.
The maximum temperature change is about 30°C in the tenth cycle. This confirms the fact that,
to constrain a divergent motion, viscoplastic work is transformed to themmal energy which is accumulated
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in the insulated system.

30
25

20

Temperature Change [°c}

Load Period = 7.831 ms

Dynamic T.E.
Dynamic T.E.VP.
Qu:sistntic T.E.VP,

. |
bl il '1’

(X,)‘) (3/2 b/Z)

§ ' Hl i |
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Cycle Number
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Fig.16 Temperature change vs. cycle number {t/t:) up to the 10th cycle at (x,y)=(a/2,-b/2) ; DYNA1

Finally, the temperature response of DYNA2 is plotted in Fig.17. As expected, the coupling

effect is noticeable for the D.T.E.VP. curve.

the ten cycles.

30
25

20

Temperature Change °c)

Load Period = 1.566 ms

Dynamic T.E.
Dynamic T.E.VP.

—— Quasistatic T.E.VP,

Cycle Number

The maximum temperature rise is about 25°C after

Fig.17 Temperature change vs. cycle number (t / t) up to the 10th cycle at (x,y)=(a/2,-b/2) ; DYNA2

Conclusions

In this paper, we set up the finite element formulation that enables thermo-elasto-viscoplastic
analyses for composite materials focusing on the fully-coupled thermomechanical situation. The
matrix-partitioned unmixing-mixing scheme was adopted as the constitutive model on orthotropic
thermo-elasto-viscoplasticity. Through a series of numerical tests, it is concluded that the heating
effect due to the irreversible viscoplastic work may be significant depending on the repeated cycles,
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the applied load levels, and the material properties. In quasistatic nonuniform field problems, especially,
the thermal conduction in the energy equation can relieve the cyclic heating effect. On the other
hand, in dynamic environment, the viscoplastic work dissipates mechanical energy into thermal energy,
which plays the role of a damping mechanism.
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