• 제목/요약/키워드: simulation-based reliability method

검색결과 493건 처리시간 0.029초

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

신뢰성지수를 이용한 연직배수공법의 확률론적 해석 (Probabilistic Analysis of Vertical Drains using Hasofer-Lind Reliability Index)

  • 김성필;허준;봉태호
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.1-6
    • /
    • 2011
  • The conventional factor of safety as used in geotechnical engineering does not reflect the degree of uncertainty of the relevant parameters. Then in the geotechnical engineering, there have been efforts to reflect the uncertainties of the geotechnical properties through probabilistic analysis. In this study, a practical method for probabilistic analysis using the Hasofer-Lind reliability index is introduced. The method is based on the perspective of an ellipsoid that just touches the failure surface in the original space of the variables. The method is applied to prefabricated vertical drains (PVD) and compared with the result of Monte Carlo Simulation method.

풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획 (Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators)

  • 오웅진;이연찬;최재석;윤용범;김찬기;임진택
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

Reliability-based fragility analysis of nonlinear structures under the actions of random earthquake loads

  • Salimi, Mohammad-Rashid;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.75-84
    • /
    • 2018
  • This study presents the reliability-based analysis of nonlinear structures using the analytical fragility curves excited by random earthquake loads. The stochastic method of ground motion simulation is combined with the random vibration theory to compute structural failure probability. The formulation of structural failure probability using random vibration theory, based on only the frequency information of the excitation, provides an important basis for structural analysis in places where there is a lack of sufficient recorded ground motions. The importance of frequency content of ground motions on probability of structural failure is studied for different levels of the nonlinear behavior of structures. The set of simulated ground motion for this study is based on the results of probabilistic seismic hazard analysis. It is demonstrated that the scenario events identified by the seismic risk differ from those obtained by the disaggregation of seismic hazard. The validity of the presented procedure is evaluated by Monte-Carlo simulation.

A response spectrum method for seismic response analysis of structures under multi-support excitations

  • Li, Jian-Hua;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • 제21권3호
    • /
    • pp.255-273
    • /
    • 2005
  • Based on the random vibration theory, a response spectrum method is developed for seismic response analysis of linear, multi-degree-of-freedom structures under multi-support excitations is developed. Various response quantities, including the mean and variance of the peak response, the response mean frequency, are obtained from proposed combination rules in terms of the mean response spectrum. This method makes it possible to apply the response spectrum to the seismic reliability analysis of structures subjected to multi-support excitations. Considering that the tedious numerical integration is required to compute the spectral parameters and correlation coefficients in above combination rules, this paper further offers simplified procedures for their computation, which enhance dramatically the computational efficiency of the suggested method. The proposed procedure is demonstrated for tow numerical examples: (1) two-span continuous beam; (2) two-tower cabled-stayed bridge by using Monte Carlo simulation (MC). For this purpose, this paper also presents an approach to simulation of ground motions, which can take into account both mean and variation properties of response spectrum. Computed results based on the response spectrum method are in good agreement with Monte Carlo simulation results. And compared with the MSRS method, a well-developed multi-support response spectrum method, the proposed method has an incomparable computational efficiency.

Real-time unsaturated slope reliability assessment considering variations in monitored matric suction

  • Choi, Jung Chan;Lee, Seung Rae;Kim, Yunki;Song, Young Hoon
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.263-274
    • /
    • 2011
  • A reliability-based slope stability assessment method considering fluctuations in the monitored matric suction was proposed for real-time identification of slope risk. The assessment model was based on the limit equilibrium model for infinite slope failure. The first-order reliability method (FORM) was adopted to calculate the probability of slope failure, and results of the model were compared with Monte-Carlo Simulation (MCS) results to validate the accuracy and efficiency of the model. The analysis shows that a model based on Advanced First-Order Reliability Method (AFORM) generates results that are in relatively good agreement with those of the MCS, using a relatively small number of function calls. The contribution of random variables to the slope reliability index was also examined using sensitivity analysis. The results of sensitivity analysis indicate that the effective cohesion c' is a significant variable at low values of mean matric suction, whereas matric suction ($u_a-u_w$) is the most influential factor at high mean suction values. Finally, the reliability indices of an unsaturated model soil slope, which was monitored by a wireless matric suction measurement system, were illustrated as 2D images using the suggested probabilistic model.

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

모의분석을 통한 OMS/MP 산출기법에 관한 연구 (A Study Techniques of OMS/MP Generation Using War Game Simulation)

  • 김해연;변재정
    • 한국군사과학기술학회지
    • /
    • 제15권6호
    • /
    • pp.802-811
    • /
    • 2012
  • This study proposes an OMS/MP preparation methodology using a simulation method instead of a survey method. We applied our methodology to the next generation detection radar, providing reasonable peace- and war-time OMS/MP values. Based on these results, we propose the process to calculate RAM objective values. The previous survey method required to supplement its method since the method used data from a similar weapon system. In addition, the previous method didn't provide enough reliability for the future weapon system. Instead of using the previous survey method, we propose to use war game simulation, which provides a better OMS/MP values. Based on these results, we propose the logical consecutive process that prepares combat and simulation scenarios, peace- and war-time OMS/MP values and RAM objective values.

열화인자별 변동계수 변화에 따른 콘크리트 구조물의 신뢰성 지수에 관한 연구 (Study of Reliability Index in Concrete Structures Considering Coefficient of Variation of Degradation Factors)

  • 김주형;정상화;김태상;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.541-544
    • /
    • 2008
  • 최근 많은 연구자들에 의해 철근 콘크리트 구조물에 대한 신뢰성 이론에 바탕으로 해석 및 설계방법에 대한 연구가 활발히 진행되고 있다. 이에 염해환경 콘크리트 구조물의 내구성에 대한 확률론적인 이론에 바탕을 둔 MCS(Monte Carlo Simulation) 기법을 이용한 해석방법에 대한 관심이 높아지고 있다. 확률론적인 해석 방법에 대한 많은 이론과 시험방법에 대한 연구가 활발히 진행되고 있으나, 열화인자별 확률분포를 산정하기에는 데이터가 부족하고 신뢰성 이론을 이용한 내구성 해석방법은 데이터의 확률분포와 변동계수에 따라 사용수명과 신뢰성 지수가 다르게 나타나는데 그 영향 정도에 대한 연구가 미진한 실정이다. 따라서 본 연구에서는 확률 분포를 산정하기 위한 실험 데이터의 중요성을 확인하고, 이를 바탕으로 철근 콘크리트 구조물의 염해에 대한 열화인자별 변동계수의 변화를 고려한 신뢰성 지수에 대한 연구를 수행하였으며, 각 인자별에 대한 영향정도를 분석하였다.

  • PDF

An Excess Carrier Lifetime Extraction Method for Physics-based IGBT Models

  • Fu, Guicui;Xue, Peng
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.778-785
    • /
    • 2016
  • An excess carrier lifetime extraction method is derived for physics-based insulated gate bipolar transistor (IGBT) models with consideration of the latest development in IGBT modeling. On the basis of the 2D mixed-mode Sentaurus simulation, the clamp turn-off test is simulated to obtain the tail current. The proposed excess carrier lifetime extraction method is then performed using the simulated data. The comparison between the extracted results and actual lifetime directly obtained from the numerical device model precisely demonstrates the accuracy of the proposed method.