• Title/Summary/Keyword: simple prediction equation

Search Result 133, Processing Time 0.032 seconds

A Study on Mixed Convection Heat Transfer in Duct Flow behind a Backward-Facing Step by Using Schlieren Interferometer (쉴리렌 간섭계에 의한 사각덕트내 후향계단후 유동에서의 혼합대류 전열에 관한 연구)

  • Baek, B.J.;Pak, B.C.;Kim, J.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1994
  • The flow and heat transfer characteristics behind a backward facing step located in a vertical channel has been studied. In this study, the numerical prediction has been performed by solving the Navier-Stokes equation and energy equation simultaneously with the SIMPLE algorithm embedied in TEACH code. Local heat flux was measured by using Schlieren Interferometer. The flow visualization was performed using the cylindrical lens and the laser beam that is scattered by the supplied glycerine particles. The velocity and temperature distributions, recirculation region, reattachment length, and local heat flux are obtained under the various parameters to investigate the buoyancy effect on the flow and heat transfer characteristics behind the step.

  • PDF

Numerical Study on Blockage and Slip Characteristics of Centrifugal Compressor Impellers (원심압축기 임펠러의 Blockage와 Slip 특성에 관한 수치연구)

  • Oh, Jongsik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.236-244
    • /
    • 2000
  • As the second part of the author's study, the aerodynamic blockage and the slip factor of 8 centrifugal compressor impellers are investigated, when the flow rate is changed from numerical stall to choke, using three-dimensional Navier-Stokes analysis results. Based on all the exit blockage distributions, an improved model equation with two adjusting coefficients is developed for the use in design processes with the agile engineering purpose. A popular expression of constant slip factors, the Wiesner's equation, cannot be applied in design processes when more accurate prediction is strongly required at design and off-design points. Slip factor variation is found to be also influenced by the blade loadings at midspan. When the flow rate is changed, a pattern of the slip factor variations is assumed to be a simple form which can be explained using midspan blade loading distributions.

  • PDF

Solutions of the Navier-Stokes equation in slip flow region (Slip flow 영역에서 Navier Stokes 방정식의 해석 연구)

  • Park, W.H.;Kim, T.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.597-602
    • /
    • 2000
  • In a MEMS(micro-electro mechanical system), the fluid may slip near the surface of a solid and have a discontinuous temperature profile. A numerical prediction in this slip flow region can provide a reasonable guide for the design and fabrication of micro devices. The compressible Navier-Stokes equation with Maxwell/smoluchowski boundary condition is solved for two simple systems; couette flow and pressure driven flow in a long channel. We found that the couette flow could be regarded as an incompressible system in low speed regions. For the pressure driven flow system, we observed nonlinear distribution of pressure in the long channel and numerical results showed a good agreement with the experimental results.

  • PDF

The Interaction Potential Functions in an Electrolyte Protein Solution

  • Jee, Nam-Yong;Kim, Jae-Jun
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.654-658
    • /
    • 2006
  • Recent developments in equations of state for molecular fluids have demonstrated the feasibility of using the hard-sphere equation to describe the effects of repulsive forces in simple fluids. By including a suitable term for attractive forces, most conveniently a uniform background potential, the properties of bio-macromolecular interaction can be roughly calculated. However, the choice of the potential used in perturbed hard-sphere chain (PHSC) theory for describing the attractions between macromolecules is rather complicated. For hard-sphere chains, the prediction accuracy from each model strongly depends on the choice of potential function.

Mechanistic ligand-receptor interaction model: operational model of agonism

  • Kim, Hyungsub;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.115-117
    • /
    • 2018
  • This tutorial explains the basic principles of mechanistic ligand-receptor interaction model, which is an operational model of agonism. A growing number of agonist drugs, especially immune oncology drugs, is currently being developed. In this tutorial, time-dependent ordinary differential equation for simple $E_{max}$ operational model of agonism was derived step by step. The differential equation could be applied in a pharmacodynamic modeling software, such as NONMEM, for use in non-steady state experiments, in which experimental data are generated while the interaction between ligand and receptor changes over time. Making the most of the non-steady state experimental data would simplify the experimental processes, and furthermore allow us to identify more detailed kinetics of a potential drug. The operational model of agonism could be useful to predict the optimal dose for agonistic drugs from in vitro and in vivo animal pharmacology experiments at the very early phase of drug development.

Schwinger Pair Production via Polons and the Origin of Stokes Phenomena

  • Kim, Sang Pyo
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1225-1230
    • /
    • 2018
  • Schwinger pair production of electrons and positrons in a strong electric field is a prediction of nonperturbative quantum field theory, in which the out-vacuum is superposed of multi-particle states of the in-vacuum. Solving the Dirac or Klein-Gordon equation in the background field, though a linear wave equation, and finding the pair-production rate is a difficult or nontrivial job. The phase-integral method has recently been introduced to compute the pair production in space-dependent electric fields, and a complex analysis method has been employed to calculate the pair production in time-dependent electric fields. In this paper, we apply the complex analysis method to a Sauter-type electric field and other hyperbolic-type electric fields that vanish in the past and future and show that the Stokes phenomena in pair production occur when the time-dependent frequency for a given momentum has finite simple poles (polons) with pure imaginary residues.

3D Finite Element-based Study on Skin-pass Rolling - Part II : Development of the Model (3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part II : 모델 개발)

  • Yoon, S.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.136-140
    • /
    • 2016
  • Although the finite element method is a good tool to analyze skin-pass rolling, it is hard to be applied in the field because of its long calculation time. In the current study, simple numerical models were developed for the prediction of roll force and residual stress profiles along the strip width. These models are based on finite element analysis and a coupled solution of Sims’ equation and Hitchcock’s formula. The results indicate that plastic strains can be represented as in simple equations of the deformed roll profile and the initial thickness of the strip.

A Numerical Optimization Study on the Ventilation Flows in a Workshop (작업장 환기장치 최적화 유동 연구)

  • 엄태인;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 1995
  • A preliminary study is performed in order to design an effective ventilation equipment for the control of possible pollutants in a workshop. To this end, the Patankar's SIMPLE methodology is used to investigate the flow characteristics of the contaminated thermal deflected jet which is encounted often in practical hood system. SIMPLE-Consistent algorithm is employed for the pressure-velocity coupling appeared in momentum equations. A two equation, k-$\varepsilon$ model is used for Reynolds stresses. The prediction data is compared well against the experimental results by Chang(1989). Considering the control of the wake due to its high turbulence together with the stagnant feature has been investigated in term of major parameters such as temperature and magnitude of the discharge velocity. Detailed discussions are made to reduce the size of the wake region which give rise to pollutant concentration stratification.

  • PDF

Development of Simple Prediction Method for Injury Severity and Amount of Traumatic Hemorrhage via Analysis of the Correlation between Site of Pelvic Bone Fracture and Amount of Transfusion: Pelvic Bleeding Score (골반골절 환자의 골절위치와 출혈량간의 상관관계 분석을 통한 대량수혈 필요에 대한 간단한 예측도구 개발: 골반골 출혈 지수)

  • Lee, Sang Sik;Bae, Byung Kwan;Han, Sang Kyoon;Park, Sung Wook;Ryu, Ji Ho;Jeong, Jin Woo;Yeom, Seok Ran
    • Journal of Trauma and Injury
    • /
    • v.25 no.4
    • /
    • pp.139-144
    • /
    • 2012
  • Purpose: Hypovolemic shock is the leading cause of death in multiple trauma patients with pelvic bone fracures. The purpose of this study was to develop a simple prediction method for injury severity and amount of hemorrhage via an analysis of the correlation between the site of pelvic bone fracture and the amount of transfusion and to verify the usefulness of the such a simple scoring system. Methods: We analyzed retrospectively the medical records and radiologic examination of 102 patients who had been diagnosed as having a pelvic bone fracture and who had visited the Emergency Department between January 2007 and December 2011. Fracture sites in the pelvis were confirmed and re-classified anatomically as pubis, ilium or sacrum. A multiple linear regression analysis was performed on the amount of transfusion, and a simplified scoring system was developed. The predictive value of the amount of transfusion for the scoring system as verified by using the receiver operating characteristics (ROC). The area under the curve of the ROC was compared with the injury severity score (ISS). Results: From among the 102 patients, 97 patients (M:F=68:29, mean $age=46.7{\pm}16.6years$) were enrolled for analysis. The average ISS of the patients was $16.2{\pm}7.9$, and the average amount of packed RBC transfusion for 24 hr was $3.9{\pm}4.6units$. The regression equation resulting from the multiple linear regression analysis was 'packed RBC units=1.40${\times}$(sacrum fracture)+1.72${\times}$(pubis fracture)+1.67${\times}$(ilium fracture)+0.36' and was found to be suitable (p=0.005). We simplified the regression equation to 'Pelvic Bleeding Score=sacrum+pubis+ilium.' Each fractured site was scored as 0(no fracture) point, 1(right or left) point, or 2(both) points. Sacrum had only 0 or 1 point. The score ranged from 0 to 5. The area under the curve (AUC) of the ROC was 0.718 (95% CI: 0.588-0.848, p=0.009). For an upper Pelvis Bleeding Score of 3 points, the sensitivity of the prediction for a massive transfusion was 71.4%, and the specificity was 69.9%. Conclusion: We developed a simplified scoring system for the anatomical fracture sites in the pelvis to predict the requirement for a transfusion (Pelvis Bleeding Score (PBS)). The PBS, compared with the ISS, is considered a useful predictor of the need for a transfusion during initial management.

Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures

  • Chou, Jui-Ching;Lin, Der-Guey
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In metropolitan areas, the quantity and density of the underground structure increase rapidly in recent years. Even though most damage incidents of the underground structure were minor, there were still few incidents causing a great loss in lives and economy. Therefore, the safety evaluation of the underground structure becomes an important issue in the disaster prevention plan. Liquefaction induced uplift is one important factor damaging the underground structure. In order to perform a preliminary evaluation on the safety of the underground structure, simplified prediction equations were introduced to provide a first order estimation of the liquefaction induced uplift. From previous studies, the input motion is a major factor affecting the magnitude of the uplift. However, effects of the input motion were not studied and included in these equations in an appropriate and rational manner. In this article, a numerical simulation approach (FLAC program with UBCSAND model) is adopted to study effects of the input motion on the uplift. Numerical results show that the uplift and the Arias Intensity (Ia) are closely related. A simple modification procedure to include the input motion effects in the Sasaki and Tamura prediction equation is proposed in this article for engineering practices.