Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1225

Schwinger Pair Production via Polons and the Origin of Stokes Phenomena  

Kim, Sang Pyo (Department of Physics, Kunsan National University)
Abstract
Schwinger pair production of electrons and positrons in a strong electric field is a prediction of nonperturbative quantum field theory, in which the out-vacuum is superposed of multi-particle states of the in-vacuum. Solving the Dirac or Klein-Gordon equation in the background field, though a linear wave equation, and finding the pair-production rate is a difficult or nontrivial job. The phase-integral method has recently been introduced to compute the pair production in space-dependent electric fields, and a complex analysis method has been employed to calculate the pair production in time-dependent electric fields. In this paper, we apply the complex analysis method to a Sauter-type electric field and other hyperbolic-type electric fields that vanish in the past and future and show that the Stokes phenomena in pair production occur when the time-dependent frequency for a given momentum has finite simple poles (polons) with pure imaginary residues.
Keywords
Schwinger effect; Strong QED; Complex analysis; Stokes phenomena;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).   DOI
2 J. S. Schwinger, Phys. Rev. 82, 664 (1951).   DOI
3 B. S. DeWitt, The Global Approach to Quantum Field Theory (Oxford University Press, New York, 2003), Vol. 1, 2.
4 S. P. Kim, H. K. Lee and Y. Yoon, Phys. Rev. D 78, 105013 (2008).   DOI
5 S. P. Kim, H. K. Lee and Y. Yoon, Phys. Rev. D 82, 025015 (2010).   DOI
6 S. P. Kim, The Universe 4(2), 8 (2016).
7 S. P. Kim and D. N. Page, Phys. Rev. D 75, 045013 (2007).   DOI
8 C. K. Dumlu and G. V. Dunne, Phys. Rev. Lett. 104, 250402 (2010).   DOI
9 C. K. Dumlu and G. V. Dunne, Phys. Rev. D 83, 065028 (2011).   DOI
10 C. K. Dumlu and G. V. Dunne, Phys. Rev. D 84, 125023 (2011).   DOI
11 J. Gordon and G. W. Semenoff, J. Math. Phys. 56, 022111 (2015).   DOI
12 J. Gordon and G. W. Semenoff, J. Math. Phys. 59, 019901 (2018).   DOI
13 M. F. Linder, C. Schneider, J. Sicking, N. Szpak and R. Schutzhold, Phys. Rev. D 92, 085009 (2015).   DOI
14 S. P. Kim and D. N. Page, Phys. Rev. D 65, 105002 (2002).   DOI
15 G. Torgrimsson, J. Oertel and R. Schützhold, Phys. Rev. D 94, 065035 (2016).   DOI
16 M. F. Linder, Ph.D Dissertation., Universitat Duisburg-Essen, 2018, arXiv:1807.08050 [hep-th].
17 S. P. Kim, Phys. Lett. B 725, 500 (2013).   DOI
18 S. P. Kim, Phys. Rev. D 88, 044027 (2013).   DOI
19 S. P. Kim, JPS Conf. Proc. 1, 013110 (2014).
20 F. Sauter, Z. Phys. 69, 742 (1931).   DOI
21 G. V. Dunne and C. Schubert, Phys. Rev. D 72, 105004 (2005).   DOI
22 C. K. Dumlu, Phys. Rev. D 79, 065027 (2009).   DOI
23 S. P. Kim and C. Schubert, Phys. Rev. D 84, 125028 (2011).   DOI
24 S. P. Kim, Schwinger Pair Production in Solitonic Gauge Fields, arXiv:1110.4684 [hep-th].
25 V. G. Bagrov and D. M. Gitman, Exact Solutions of Relativistic Wave Equations, Mathematics and Its Applications, Soviet Weries, 39 (Kluwer, Dordrecht, Netherlands, 1990).