Browse > Article

The Interaction Potential Functions in an Electrolyte Protein Solution  

Jee, Nam-Yong (The College of Architecture, Department of Architectural Engineering, Hanyang University)
Kim, Jae-Jun (The College of Architecture, Department of Architectural Engineering, Hanyang University)
Publication Information
Macromolecular Research / v.14, no.6, 2006 , pp. 654-658 More about this Journal
Abstract
Recent developments in equations of state for molecular fluids have demonstrated the feasibility of using the hard-sphere equation to describe the effects of repulsive forces in simple fluids. By including a suitable term for attractive forces, most conveniently a uniform background potential, the properties of bio-macromolecular interaction can be roughly calculated. However, the choice of the potential used in perturbed hard-sphere chain (PHSC) theory for describing the attractions between macromolecules is rather complicated. For hard-sphere chains, the prediction accuracy from each model strongly depends on the choice of potential function.
Keywords
equation of state; hard sphere; potential function;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 R. A. Curtis, A. Montaser, H. W. Blanch, and J. M. Prausnitz, Biotechnol. Bioeng., 57, 11 (1998)   DOI   ScienceOn
2 B. L. Neal and A. M. Lenhoff, AIChE J., 41, 1010 (1995)   DOI   ScienceOn
3 B. H. Chang and Y. C. Bae, Biophys. Chem., 104, 523 (2003)   DOI   ScienceOn
4 W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem. Res., 29, 1709 (1990)   DOI
5 W. G. Chapman, G. Jackson, and K. E. Gubbins, Mol. Phys., 65, 1057 (1988)   DOI   ScienceOn
6 J. Wu and J. M. Prausnitz, Fluid Phase Equilib., 165, 139 (1999)
7 D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, and J. M. Prausnitz, Biophys. J., 73, 3211 (1997)   DOI   ScienceOn
8 E. J. Park and Y. C. Bae, Biophys. Chem., 109, 169 (2004)   DOI   ScienceOn
9 S. G. Kim and Y. C. Bae, Macromol. Res., 11, 53 (2003)   DOI
10 J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 54, 5237 (1971)   DOI
11 J. A. Barker and D. Henderson, J. Chem. Phys., 47, 4714 (1967)   DOI
12 R. Dickman and C. K. Hall, J. Chem. Phys., 85, 4108 (1986)   DOI
13 J. J. Grigsby, H. W. Blanch, and J. M. Prausnitz, Biophys. Chem., 91, 231 (2001)   DOI   ScienceOn
14 M. S. Wertheim, J. Chem. Phys., 85, 2929 (1985)   DOI
15 F. Rothstein, Differential precipitation of proteins, R. G. Harrion, Ed., Dekker, New York, 1994
16 M. Muschol and F. Rosenberger, J. Cryst. Growth, 167, 738 (1996)   DOI   ScienceOn
17 D. Asthagiri and B. L. Neal, Biophys. Chem., 78, 219 (1999)   DOI   ScienceOn
18 B. H. Chang and Y. C. Bae, Biomacromol., 4, 1713 (2003)   DOI   ScienceOn
19 K. G. Honnell and C. H. Hall, J. Chem. Phys., 90, 1841 (1989)   DOI
20 I. H. Kim and Y. C. Bae, Fluid Phase Equilib., revised (2004)
21 F. Rosenberger, P. G. Vekilov, M. Muschol, and B. R. Thomas, J. Cryst. Growth, 168, 1 (1996)   DOI
22 S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworths, Boston, MA., 1985
23 J. Chang and S. I. Sandler, Mol. Phys., 81, 745 (1994)   DOI   ScienceOn