• 제목/요약/키워드: similar problem retrieval

검색결과 49건 처리시간 0.035초

사례기반 추론방법을 이용한 치공구의 선정 (Fixture Planning Using Case-Based Reasoning)

  • 현상필;이홍희
    • 산업경영시스템학회지
    • /
    • 제22권51호
    • /
    • pp.129-138
    • /
    • 1999
  • The aim of this research is the development of an automated fixture planning system for prismatic parts using the case-based reasoning (CBR). CBR is the problem solving paradigm that uses the similarity between a new problem and old cases to solve the new problem. This research uses CBR for the fixture planning. A case is composed with the information of the part, the components of fixture and the method of fixing for the part. The basic procedure is the retrieval and adaptation for the case, and this research presents the method of retrieval that selects most similar case to the new situation. The retrieval-step is divided into an index matching and an aggregated matching. The adaptation is accomplished by the modification, which transforms the selected case to the solution of the situation of the input part by the specified CBR algorithm. The components of fixture and the method of fixing are determined for a new part by the procedure.

  • PDF

시계열 데이타베이스에서 유사한 서브시퀀스의 모양 기반 검색 (Shape-Based Retrieval of Similar Subsequences in Time-Series Databases)

  • 윤지희;김상욱;김태훈;박상현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권5호
    • /
    • pp.381-392
    • /
    • 2002
  • 본 논문에서는 시계열 데이타베이스에서의 모양 기반 검색 문제에 관하여 논의한다. 모양 기반 검색은 실제 요소 값과 관계없이 질의 시퀀스와 유사한 모양을 갖는 (서브)시퀀스를 찾는 연산이다. 본 연구에서는 모양 기반 서브시퀀스 검색을 위한 새로운 기법을 제안한다. 먼저, 시프팅, 스케일링, 이동 평균, 타임 워핑 등 변환들의 다양한 조합을 지원하는 모양 기반 검색을 위하여 새로운 유사 모델을 제시한다. 또한, 이러한 유사 모델을 기반으로 하는 모양 기반 검색을 효과적으로 처리하기 위하여 효율적인 인덱싱 및 질의 처리 기법들을 제안한다. 제안된 기법의 유용성을 규명하기 위하여 실제 데이타인 S&P 500 주식 데이터를 이용한 다양한 실험을 수행한다. 실험 결과에 의하면, 제안된 기법은 질의 시퀀스의 모양과 유사한 모양을 갖는 서브시퀀스들을 성공적으로 검색할 뿐만 아니라 순차 검색 기법과 비교하여 66배까지의 상당한 성능 개선 효과를 갖는 것으로 나타났다.

Low Peak Feature와 영상 Color를 이용한 유사 동영상 검색 (Similar Movie Retrieval using Low Peak Feature and Image Color)

  • 정명범;고일주
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권8호
    • /
    • pp.51-58
    • /
    • 2009
  • 본 논문에서는 오디오의 Low Peak Feature와 영상의 Color 값을 이용하여 유사한 동영상을 찾는 알고리즘을 제안한다. 동영상 검색 시 영상 데이터 전체를 이용하면 많은 시간과 저장 공간이 필요하다. 게다가 같은 영상임에도 해상도 또는 코덱이 다른 경우 전혀 다른 영상으로 인식된다. 따라서 해상도와 코덱이 달라져도 변화가 크지 않은 오디오의 파형으로부터 강인한 Peak 특징을 추출하고, 그 위치의 영상 Color 값을 비교하여 유사한 동영상을 검색하는 방법을 제안한다. 제안 방법의 성능을 확인하기 위해 2,000개의 동영상 데이터를 수집하여 실험하였으며, 그 결과 97.7%의 검색 성공률을 나타내었다.

Petri Net을 이용한 CBR 시스템의 사례검색 (Case Retrieval of Case-Based Reasoning(CBR) System Using Petri Net)

  • 오용민;임동수;황원우;정석권;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.774-779
    • /
    • 2001
  • If rotating machinery have a fault, we can detect it using vibration or noise signals. However some maintenance engineers who doesn't have expert knowledge, needs the help of vibration experts for diagnosing rotating machinery. But qualified experts are rare, therefore we have been developed the case based reasoning (CBR) system which is able to manipulate the past experiences of vibration diagnosis experts. In the CBR system, the maintenance engineers can retrieve too information from previous cases which are most similar to new problem and they can solve new problem using solutions from the previous cases. In this paper, we propose a new method which is the case retrieval of CBR system using Petri net and we also applied it to diagnosis for electric motors as a practical problem.

  • PDF

페트리 네트를 이용한 사례기반 추론 진동진단시스템의 개발 (Development of Case-base Reasoning Vibration Diagnosis System)

  • 양보석;오용민;정석권
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.414-421
    • /
    • 2001
  • If a machine has some faults, we can detect them using vibration or noise signals. However some maintenance engineers who don\`t have export knowledge, need the help of vibration experts for diagnosing the machine. In this paper a case based reasoning (CBR) system is developed which is able to manipulate the past experiences of vibration diagnosis experts. In the CBR system, the maintenance engineers can retrieve the information form previous cases which are most similar to new problem s that they can solve new problem using solutions form the previous cases. In this paper, a new case retrieval method of CBR system using Petri net is proposed and also applied to diagnosis for electric motors as a practical problem.

  • PDF

Color Image Query Using Hierachical Search by Region of Interest with Color Indexing

  • Sombutkaew, Rattikorn;Chitsobhuk, Orachat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.810-813
    • /
    • 2004
  • Indexing and Retrieving images from large and varied collections using image content as a key is a challenging and important problem in computer vision application. In this paper, a color Content-based Image Retrieval (CBIR) system using hierarchical Region of Interest (ROI) query and indexing is presented. During indexing process, First, The ROIs on every image in the image database are extracted using a region-based image segmentation technique, The JSEG approach is selected to handle this problem in order to create color-texture regions. Then, Color features in form of histogram and correlogram are then extracted from each segmented regions. Finally, The features are stored in the database as the key to retrieve the relevant images. As in the retrieval system, users are allowed to select ROI directly over the sample or user's submission image and the query process then focuses on the content of the selected ROI in order to find those images containing similar regions from the database. The hierarchical region-of-interest query is performed to retrieve the similar images. Two-level search is exploited in this paper. In the first level, the most important regions, usually the large regions at the center of user's query, are used to retrieve images having similar regions using static search. This ensures that we can retrieve all the images having the most important regions. In the second level, all the remaining regions in user's query are used to search from all the retrieved images obtained from the first level. The experimental results using the indexing technique show good retrieval performance over a variety of image collections, also great reduction in the amount of searching time.

  • PDF

위성영상 검색에서 사용자 관심영역을 이용한 적합성 피드백 (Relevance Feedback using Region-of-interest in Retrieval of Satellite Images)

  • 김성진;정진완;이석룡;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권6호
    • /
    • pp.434-445
    • /
    • 2009
  • 내용 기반 영상 검색(content based image retrieval)은 영상 자체의 정보를 이용하여 유사 영상을 검색하는 기법이다. 하지만 멀티미디어 데이터는 텍스트 데이터와 달리 얻을 수 있는 데이터가 정확하지 않고 또한 시스템에서 표현되는 데이터의 저차원(low-level)의 표현법과 사용자가 인식하는 고차원(high-level)의 개념(concept)은 상당한 차이를 나타내게 된다. 즉 시스템 상에서 벡터들로 표현된 영상 데이터들이 벡터스페이스 상에서는 가깝지만 실제 사용자는 유사하지 않다고 인식하는 문제점이 발생한다. 이를 의미적 간극(semantic-gap) 문제라고 부른다. 이런 의미적 간극 문제로 인해 영상검색 결과는 좋지 않은 성능을 보이게 된다. 이를 해결하기 위해 사용자의 피드백 정보를 이용하여 질의를 수정하는 적합성 피드백 기법이 널리 사용되고 있다. 하지만 기존의 적합성 피드백은 사용자의 관심영역(region-of-interest, 이하 ROI)를 고려하지 않아 적합한(relevant) 영역의 모든 영역들이 새로운 질의 점을 계산하는 과정에서 사용된다. 시스템은 그 스스로 사용자 관심영역을 알지 못하기 때문에 적합성 피드백을 영상수준(image-level)으로 진행하기 때문이다. 이 논문에서는 복잡한 위성영상 영역 검색에서 관심영역을 사용자가 직접 선택하도록 유도하여 더욱 정확한 질의 점을 계산하여 정확도를 높이는 사용자 관심영역 적합성 피드백 방법을 제시한다. 또한 사용자가 선택하지 않은 부정확한 영상 정보를 이용하여 정확도를 향상시키는 프루닝 기법도 함께 제시한다. 실험을 통하여 사용자 관심영역 적합성 피드백의 우수성과 함께 제안한 프루닝 기법의 효율성도 함께 보여준다.

컬러 히스토그램과 에지 히스토그램 디스크립터를 이용한 영상 검색 기법 (Similar Image Retrieval using Color Histogram and Edge Histogram Descriptor)

  • 조민혁;이상걸;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.332-335
    • /
    • 2013
  • 본 논문에서는 컬러 히스토그램과 MPEG-7의 EHD(Edge Histogram Descriptor)를 이용한 영상 검색 기법을 제안한다. EHD 알고리즘은 에지의 기울기 분포를 수집하여 유사 영상을 검색하는데 사용할 수 있다. 하지만 영상의 색상 정보는 고려하지 않고 에지의 기울기만으로 검색하면 색상 정보에는 취약한 면을 보인다. 이를 보완하기 위해서 컬러 히스토그램을 이용해 특징을 추출하여 유사 영상인지 판단한다. 기존 EHD의 취약점을 보이고 컬러 히스토그램을 이용하여 이를 보완할 수 있는 기법을 제안한다.

  • PDF

벤쳐 투자를 위한 의사결정 클래스 분석 : 사례기반추론 접근방법 (Analyzing a Class of Investment Decisions in New Ventures : A CBR Approach)

  • Lee, Jae-Kwang;Kim, Jae-Kyeong
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.355-361
    • /
    • 1999
  • An application of case-based reasoning is proposed to build an influence diagram for identifying successful new ventures. The decision to invest in new ventures in characterized by incomplete information and uncertainty, where some measures of firm performance are quantitative, while some others are substituted by qualitative indicators. Influence diagrams are used as a model for representing investment decision problems based on incomplete and uncertain information from a variety of sources. The building of influence diagrams needs much time and efforts and the resulting model such as a decision model is applicable to only one specific problem. However, some prior knowledge from the experience to build decision model can be utilized to resolve other similar decision problems. The basic idea of case-based reasoning is that humans reuse the problem solving experience to solve a new decision. In this paper, we suggest a case-based reasoning approach to build an influence diagram for the class of investment decision problems. This is composed of a retrieval procedure and an adaptation procedure. The retrieval procedure use two suggested measures, the fitting ratio and the garbage ratio. An adaptation procedure is based on a decision-analytic knowledge and decision participants knowledge. Each step of procedure is explained step by step, and it is applied to the investment decision problem in new ventures.

  • PDF

경매 시스템에서 시계열 분석에 기반한 낙찰 예정가 추천 방법 (Reserve Price Recommendation Methods for Auction Systems Based on Time Series Analysis)

  • 고민정;이용규
    • Journal of Information Technology Applications and Management
    • /
    • 제12권1호
    • /
    • pp.141-155
    • /
    • 2005
  • It is very important that sellers provide reasonable reserve prices for auction items in internet auction systems. Recently, an agent has been proposed to generate reserve prices automatically based on the case similarity of information retrieval theory and the moving average of time series analysis. However, one problem of the previous approaches is that the recent trend of auction prices is not well reflected on the generated reserve prices, because it simply provides the bid price of the most similar item or an average price of some similar items using the past auction data. In this paper. in order to overcome the problem. we propose a method that generates reserve prices based on the moving average. the exponential smoothing, and the least square of time series analysis. Through performance experiments. we show that the successful bid rate of the new method can be increased by preventing sellers from making unreasonable reserve prices compared with the previous methods.

  • PDF