• Title/Summary/Keyword: silylation

Search Result 38, Processing Time 0.044 seconds

Selective Silylation Reaction of Aldehydes with 1,1'-Bis(dimethylsilyl)ferrocene in the Presence of Ni/Pt Catalyst (니켈/백금 촉매에 의한 1,1'-Bis(dimethylsilyl)ferrocene과 Aldehydes의 선택적 Silylation 반응)

  • Kim, Jin-Sik;Choi, Sung-Keun;Lee, Jung-Hyun;Kong, Young-Kun
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.232-239
    • /
    • 2007
  • The reaction of 1,1'-bis(dimethylsilyl)ferrocene with various aldehydes in the presence of a catalytic amount of Ni(PEt3)4 lead to the acyclic products by monohydrosilylation. The same reaction in the presence of a catalytic amount of (C2H4)Pt(PPh3)2 leads to the different cyclic six membered ring compound by double silylation. Platinum catalyzed double silylation of 4-cyanobenzaldehyde was generated 5,6-ferrocenylene-1,1,4,4,-tetramethyl-2-oxa-2- cyanophenyl-1,4-disylacyclehexane which was crystallized to have crystal structure.

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent (Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구)

  • Lee, Chan;Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fourier-transform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9° in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

Fourier Transform Infrared Spectroscopic Analysis of the Silylated Resist on Silicon Wafers in Semiconductor Lithographic Process (반도체 사진공정에서 실리콘 웨이퍼 위의 Silylated Resist의 Fourier 변환 적외선 분광분석)

  • Kang, Sung Chul;Kim, Su Jong;Son, Min Young;Park, Chun Geun
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.455-464
    • /
    • 1992
  • Using FT-IR, we determined the depth of silylated layers produced from various gas-phase-silylation conditions was proposed by using Fourier Transform Infrared (FT-IR) spectroscopic analysis. The depth of silylated layer was determined from absorbance measurments of the significant peaks (Si-O-ph, Si-C, Si-H) of FT-IR spectra with background spectrum subtraction method. And the results were compared with thickness measurments of SEM. The results were well agree with SEM. It found to be well suited for determining silylation process window.

  • PDF

The Silylation Photo Resist Process and the Enhanced-Inductively Coupled Plasma (E-ICP) (Silylation Photo resist 공정과 Enhanced-Inductively Coupled Plasma (E-ICP))

  • 정재성;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.922-925
    • /
    • 1999
  • The Silylation photo-resist etch process was tested by Enhanced-ICP dry etcher. The comparison of the two process results of micro pattern etching with 0.25${\mu}{\textrm}{m}$ CD by E-ICP and ICP reveals that E-ICP has better quality than ICP The etch rate and the microloading effect was improved in E-ICP Especially, the problem of the lateral etch was improved in E-ICP.

  • PDF

Interlamellar Silylation of Montmorillonite with 3-Aminopropyltriethoxysilane

  • Park, Kyeong-Won;Kwon, Oh-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.965-968
    • /
    • 2004
  • H-montmorillonite was modified by interlayer surface silylation using 3-aminopropyltriethoxysilane and dodecylamine in ethanol without a pre-swelling step. Dodecylamine acts as a gallery expander and silylation catalyst. The evaporation of ethanol from the dispersion yields well-ordered silylated montmorillonites with large basal spacing between 1.50 and 4.20 nm. Solid-state $^29Si$ CP MAS NMR of the silylated samples showed $Q^2\;and\;Q^3$ signals as well as $T^2\;and\;T^3$ signals. The increase in the relative intensity of $Q^3\;for\;Q^2$ and the appearance of $T^2\;and\;T^3$ signals was attributed to the grafting of 3-aminopropyltriethoxysilane to the interlayer surface silanol groups.

GC/MS Analysis of Saccharin in Foods (GC/MS를 이용한 식품중 Saccharin의 분석에 관한 연구)

  • 노동석;김승기;이정애;정현숙;유보경;박종세
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.239-247
    • /
    • 1995
  • Analytical method for saccharin in foods was developed using gas chromatography/mass spectrometry(GC/MS). Methylation with diazomethane, acetylation with MBTFA, and silylation with MSTFA and MTBSTFA were compared. Methylation of saccharin produced N-methylated saccharin as the major product and O-methylated saccharin as the minor one. Silylation of saccharin with MSTFA and MTBSTFA reasulted in the formation of the correponding O-silylated products, respectively. The derivatization of saccharin was optimized with MSTFA. The ions at m/z 240, 255, and 166 were monitored to characterize saccharin.

  • PDF

Nickel Catalyzed Silylation Reaction of Carbonyl Compounds with 1,1'-Bis(dimethylsilyl)ferrocene (니켈 촉매를 이용한 1,1'-Bis(dimethylsilyl)ferrocene과 Carbonyl 화합물의 Silylation 반응)

  • Gong, Yeong-Geon;Lee, Jeong-Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • The nickel-catalyzed reation of 1,1'-bis(dimethysilyl)ferrocene[1] with carbonyls such as benzaldehyde, 4-cyaonbezaldehyde, trimethylacetaldehyde, acethon, and benzophenone afforded 3-oxa-2,5-disilacyclo-1,1'-ferrocene. In contrast, the reation of [1] with isobutyraldehyde under the same reation condition yielded the diinsertion products formed via the insertion of two aldehyde ligands into the Si-H bond of 1,1'-bis(dimethy)ferrocene.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 1. Silylation Characteristics of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane and its Optimal Condition According to a Criterion by XRD Analysis (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 1. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 특성 및 XRD 분석의 기준에 따른 최적화)

  • Lee, Eun Ju;Lee, Jong Hoon;Park, You Jin;Yoon, Yong Keun;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.401-408
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of XRD analysis on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to XRD results, it was confirmed that peaks of Na-MMT-K were simultaneously consistent with those of K-10 and natural or Ca-MMT modified Na-MMT. Similarly, S-Na-MMT-K was observed to have two basal spacings ($d_{001}$), among which the area-ratio of a secondary (001) peak ($2{\theta}=3.9{\sim}4.2^{\circ}$) to a primary (001) peak ($2{\theta}{\sim}8.838^{\circ}$) was suggested to be a criterion to represent a degree of APS silylation-modification. Then, the optimal conditions on APS-stirring period prior to APS-MMT reaction, APS-MMT reaction period, APS concentration and reaction temperature at the highest area-ratio were turned out to be 20 min, 2~3 hr, 7.5 w/v% and $50^{\circ}C$, respectively.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증)

  • Lee, Eun Ju;Lee, Jong Hoon;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.409-418
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -$NH_2$, -$CH_2$- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and $50^{\circ}C$, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.

Repair of Plasma Damaged Low-k Film in Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 플라즈마 손상된 다공성 저유전 막질의 복원)

  • Jung, Jae-Mok;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Repair reaction of plasma damaged porous methyl doped SiOCH films was carried out with silylation agents dissolved in supercritical carbon dioxide ($scCO_2$) at various reaction time, pressure, and temperature. While a decrease in the characteristic bands at $3150{\sim}3560cm^{-1}$ was detectable, the difference of methyl peaks was not identified apparently in the FT-IR spectra. The surface hydrophobicity was rapidly recovered by the silylation. In order to induce effective repair in bulk phase, the wafer was heat treated before reaction under vacuum or ambient condition. The contact angle was slightly increased after the treatment and completely recovered after the subsequent silylation. Methyl groups were decreased after the plasma damage, but their recovery was not identified apparently from the FT-IR, spectroscopic ellipsometry, and secondary ion mass spectroscopy analyses. Furthermore, Ti evaporator was performed in a vacuum chamber to evaluate the pore sealing effect. The GDS analysis revealed that the open pores in the plasma damaged films were efficiently sealed with the silylation in $scCO_2$.