• Title/Summary/Keyword: silver nitrate

Search Result 208, Processing Time 0.028 seconds

A Study on the Silver Iodide Membrane Electrode (AgI / PVC${\cdot}$THF) (Ⅱ). Potentiometric Titration Error of Halide Mixture (요오드화은막전극 (AgI / PVC${\cdot}$THF) 에 관한 연구 (제2보). 할로겐화 이온혼합물의 전위차법 적정오차에 관한 연구)

  • Kee Chae Park;Young Soon Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.253-262
    • /
    • 1981
  • The AgI/ PV${\cdot}$THF membrane electrode could be used as an indicator electrode in the potentiometric titration of single halide and mixture halide solutions with the standard solution of silver nitrate. The errors in the stepwise titrations of mixture halide solutions were considerably large, but by addition of flocculating agent, such as $NaNO_3$ or $Ba(NO_3)_2$, in the sample solution, the errors were greatly reduced. Also, the effects of gelatin, filter paper and temperature on the titration errors were examined.

  • PDF

Rapid Detection of Fluorescent DNA on Denaturing Polyacrylamide Gel by Using Gel Scanner (겔스캐너를 이용한 변성아크릴아마이드 겔의 형광 DNA 검출)

  • Ku Ja-Hwan;Jeong Ji-Ung;Cho Young-Chan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.228-230
    • /
    • 2005
  • The denature polyacrylamide gel stain silver nitrate is used for routine nucleic acid detection. More sensitive stains, such as Vistra Green, SYBR Green are available to address a broad range of DNA applications requiring lower detection limits in polyacrylamide gel formats. Gel Scanners, laser-scanning instruments, provide sensitive fluorescence detection of DNA gel stains. We established one step fluorescent impregnation enhanced sensitivity with simple, rapid and low cost. We have applied this fluorescent staining procedure for the routine analysis of DNA profiles generated by SSR amplification.

Extinction Coefficient of Ag Nanofluids Manufactured by Chemical Reduction Method (화학적 환원법으로 제작한 은나노유체의 흡광계수)

  • Lee, S.H.;Kim, H.J.;Choi, T.J.;Kim, S.B.;Kang, Y.J.;Kim, D.J.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • In this study, we prepare the Ag nanofluids synthesized by the chemical reduction method and measure the extinction coefficient of those nanofluids at a wavelength of 632.8 nm. The Ag nanofluids are synthesized by the chemical reduction method using silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in water and ethylene glycol (EG). For stable dispersion of Ag particles in the base liquids, polyvinyl pyrrolidone (PVP) is added as a surfactant. The extinction coefficient of manufactured Ag nanofluids is measured by an in-house developed measurement system at the wavelength of 632.8 nm. The results show that the extinction coefficient of water-based and EG-based Ag nanofluids is linearly increased with respect to the particle loadings. Moreover, it is shown that the extinction coefficient of EG-based Ag nanofludis is higher than that of water-based Ag nanofluids. Finally we compare the experimental results with both the Maxwell-Garnett model and Rayleigh scattering approximation model, and they demonstrate that the Rayleigh scattering approximation model is reasonably predict the extinction coefficient of Ag nanofluids using hydraulic diameter of silver nanoparticle.

Fabrication and Characterization of Dodecyl-derivatized Silicon Nanowires for Preventing Aggregation

  • Shin, Donghee;Sohn, Honglae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3451-3455
    • /
    • 2013
  • Single-crystalline silicon nanowires (SiNWs) were fabricated by using an electroless metal-assisted etching of bulk silicon wafers with silver nanoparticles obtained by wet electroless deposition. The etching of SiNWs is based on sequential treatment in aqueous solutions of silver nitrate followed by hydrofluoric acid and hydrogen peroxide. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the Si substrate were produced. Free-standing SiNWs were then obtained using ultrasono-method in toluene. Alkyl-derivatized SiNWs were prepared to prevent the aggregation of SiNWs and obtained from the reaction of SiNWs and dodecene via hydrosilylation. Optical characterizations of SiNWs were achieved by FT-IR spectroscopy and indicated that the surface of SiNWs is terminated with hydrogen for fresh SiNWs and with dodecyl group for dodecyl-derivatized SiNWs, respectively. The main structures of dodecyl-derivatized SiNWs are wires and rods and their thicknesses of rods and wire are typically 150-250 and 10-20 nm, respectively. The morphology and chemical state of dodecyl-derivatized SiNWs are characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.

Electrochemical Behavior of the Reduction of Thin Films of $Ag_3Fe(CN)_6$

  • Moon Seongbae;Moon Jung Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1042-1045
    • /
    • 1994
  • A thin film of silver ferricyanide (Ag$_3$Fe(CN)$_6$) on a platinum or gold substrates can be reduced electrochemically to the salt of silver ferrocyanide in potassium nitrate solution. The color of these films are orange and these films are shown to be electrochromic. The voltammogram is shown the asymmetry of the oxidation compared to the reduction wave under various supporting electrolytes. The standard heterogeneous electron-transfer rate for these films and bare Pt electrode were 0.49 ${\times}$ l0$^{-2}$ and 1.30 ${\times}$ l0$^{-2}$ cm/s, respectively, obtained using a rotating disc electrode. Rough D$_0$ values, evaluated from the Levich equation, for Fe(CN)$_6^{3-/4-}$ at both SF thin film and a bare Pt disc electrode were shown as 1.2l ${\times}$ l0-6 and 0.94 ${\times}$ l0$^{-6}$ cm$^2$/s, respectively. The conductivities, as determined from the slops of the i-V curves for a ca. 1 mm sample for dried SF potassium rich and deficient bulk samples pressed between graphite electrodes, were 9.34 ${\times}$ l0$^{-9}$ and 5.80 ${\times}$ l0$^{-9}$ (${\Omega}$${\cdot}$cm)$^{-1}$, respectively.

Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method (통계학적인 방법과 왕겨를 기질로 사용하여 해양에서 분리한 Bacillus licheniformis LBH-52 를 사용한 carboxymethylcellualse의 생산조건 최적화)

  • Kim, Hye-Jin;Gao, Wa;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1083-1093
    • /
    • 2011
  • A microorganism utilizing rice hulls as a substrate for the production of carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus lincheniformis by analyses of its 16S rDNA sequences. The optimal carbon and nitrogen sources for production of CMCase were found to be rice hulls and ammonium nitrate. The optimal conditions for cell growth and the production of CMCase by B. lincheniformis LBH-52 were investigated using the response surface method (RSM). The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that a highly significant factor ("probe>F" less than 0.0001) for cell growth was rice hulls, whereas those for production of CMCase were rice hulls and initial pH of the medium. The optimal conditions of rice hulls, ammonium nitrate, initial pH, and temperature for cell growth extracted by Design Expert Software were 48.7 g/l, 1.8 g/l, 6.6, and 35.7$^{\circ}C$, respectively, whereas those for the production of CMCase were 43.2 g/l, 1.1 g/l, 6.8, and 35.7$^{\circ}C$. The maximal production of CMCase by B. lincheniformis LBH-52 from rice hulls under optimized conditions was 79.6 U/ml in a 7 l bioreactor. In this study, rice hulls and ammonium nitrate were developed to be substrates for the production of CMCase by a newly isolated marine microorganism, and the time for production of CMCase was reduced to 3 days using a bacterial strain with submerged fermentation.

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology (Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가)

  • Kim, Eun-Ji;Lee, Kyu-Bok;Jin, Myoung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.184-193
    • /
    • 2016
  • Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

Self-assembly Coordination Compounds of Cu(II), Zn(II) and Ag(I) with btp Ligands (btp = 2,6-bis(N'-1,2,4-triazolyl)pyridine):Counteranion Effects

  • Kim, Cheal;Kim, Sung-Jin;Kim, Young-Mee
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.107-127
    • /
    • 2005
  • Five Cu(II) compounds were obtained from different copper salts with btp ligands, and their structures were determined by X-ray crystallography. The structure of coordination polymer 2 contains btp-bridged tetranuclear Cu(II) units weakly connected by nitrate ions, and the structure of a discrete Cu(II) molecule 1 contains acetates and btp ligands. With perchlorate anions, two btp ligands bridge Cu(II) ions to form a double zigzag chain 3, while a single zigzag chain 4 is created with sulfate anions. The reaction of $Cu(NO_{3})_{2}$ containing $NH_{4}PF_{6}$ with btp ligands also produced a polymeric compound 5 containing $Cu(H_{2}O)_{2}^{2+}$ and $Cu(NO_{3})_{2}$ units alternatively bridged by btp ligands with H-bonds between copper bonded water and nitrate oxygen atoms. Five Zn(II) compounds were obtained from different zinc salts with btp ligands, and the structures of polymeric compounds (6, 7 and 8) and monomeric compounds (9 and 10) were determined by X-ray crystallography. With nitrate, chloride and bromide anions, btp ligands bridge Zn(II) ions to form polymeric compounds (6, 7 and 8), but btp ligands coordinate to a Zn(II) ion to form monomeric complexes (9 and 10) with $PF_{6}^{-}$ and perchlorate anions. Four silver salts and btp ligands produced two kinds of structures, dinuclear 20-membered rings and one-dimensional zigzag chain depending on different anions. For $ClO_{4}^{-}$ and OTf anions, weak interactions between Ag(I) and anions make dinuclear 20-membered rings construct polymeric compounds (11 and 13). For $PF_{6}^{-}$ anion, there are also weak interactions between Ag(I) and $F(PF_{6}^{-})(12)$, but they do not construct a polymeric compound. For $O_{2}CCF_{3}^{-}$ anion, btp ligands bridge Ag(I) atoms to make one-dimensional zigzag chain (14), and there are also interactions between Ag(I) and anions.

Inhibitory Substance Produced by Aspergillus sp. on the Snake Proteinase - Culture Conditions for the Production of Inhibitor - (Aspergillus 속 균주가 생성하는 사독 proteinase에 대한 저해물질- 저해물질의 생산조건 -)

  • Nam Joo Hyun;Jung Hwn Seu
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.135-139
    • /
    • 1987
  • Aspergillus sp. MK-24 was cultured at 3$0^{\circ}C$ in the medium consisting of 2% glucose, 0.2% NaNO$_3$, 0.02% $K_2$HPO$_4$, 0.02% MgSO$_4$ 7$H_2O$, 0.02% KCl, and at initial pH of 5.0. The production of the inhibitor on venom proteinase reached to the maximum in 7 days. Sodium nitrate or potassium nitrate as a nitrogen source was favorable. The production of inhibitor was not affected by the addition of most of the inorganic salt used but depressed by lead, zinc, cobalt, mercuric or silver salts.

  • PDF

Evaluation of the Antibacterial and Physical Properties of Paper Coated with Chitosan-Ag Nanocomposite Prepared by Green Synthesis (키토산-은나노 녹색합성 복합물질 적용 코팅지의 항균성 및 물리적 특성 평가)

  • Kyung, Gyusun;Yang, Heetae;Lee, Woosuk;Park, Jimyoung;Ko, Seonghyuk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.4
    • /
    • pp.28-36
    • /
    • 2014
  • We studied the green synthesis and antibacterial activity of paper coated with chitosan-silver (Ag) green nanocomposites for packaging applications. Green synthesis of Ag nanoparticles (AgNPs) was achieved by a chemical reaction involving a mixture of chitosan-silver nitrate ($AgNO_3$) in an autoclave at 15 psi, $121^{\circ}C$, for 30 min. AgNPs and their formation in chitosan was confirmed by UV-Vis spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). As-prepared chitosan-AgNPs composite materials were coated on manila paper using Meyer rod. Surface morphology and Ag contents in coating layer were characterized by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). The mechanical properties such as tensile strength and elongation were significantly affected by coating with chitosan-AgNPs. The antibacterial test of coated paper was performed qualitatively and quantitatively against Escherichia coli (E. coli). It was shown to be effective in suppressing the growth of E. coli with increasing Ag contents on the surface of coated paper and more than 95 R (%) of antimicrobial rate was obtained at chitosan-AgNPs coated papers.