Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.11.3451

Fabrication and Characterization of Dodecyl-derivatized Silicon Nanowires for Preventing Aggregation  

Shin, Donghee (Department of Chemistry, Chosun University)
Sohn, Honglae (Department of Chemistry, Chosun University)
Publication Information
Abstract
Single-crystalline silicon nanowires (SiNWs) were fabricated by using an electroless metal-assisted etching of bulk silicon wafers with silver nanoparticles obtained by wet electroless deposition. The etching of SiNWs is based on sequential treatment in aqueous solutions of silver nitrate followed by hydrofluoric acid and hydrogen peroxide. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the Si substrate were produced. Free-standing SiNWs were then obtained using ultrasono-method in toluene. Alkyl-derivatized SiNWs were prepared to prevent the aggregation of SiNWs and obtained from the reaction of SiNWs and dodecene via hydrosilylation. Optical characterizations of SiNWs were achieved by FT-IR spectroscopy and indicated that the surface of SiNWs is terminated with hydrogen for fresh SiNWs and with dodecyl group for dodecyl-derivatized SiNWs, respectively. The main structures of dodecyl-derivatized SiNWs are wires and rods and their thicknesses of rods and wire are typically 150-250 and 10-20 nm, respectively. The morphology and chemical state of dodecyl-derivatized SiNWs are characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.
Keywords
Silicon nanowires; Hydrosilylation; Metal-assisted etching; Aggregation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hochbaum, A. I.; Fan, R.; He, R.; Yang, P. Nano Lett. 2005, 5, 457.   DOI   ScienceOn
2 Schmidt, V.; Senz, S.; Gosele, U. Nano Lett. 2005, 5, 931.   DOI   ScienceOn
3 Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66.   DOI   ScienceOn
4 Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Nano Lett. 2008, 8, 710.   DOI   ScienceOn
5 Koo, S.; Li, Q.; Edelstein, M. D.; Richter, C. A.; Vogel, E. M. Nano Lett. 2005, 5, 2519.   DOI   ScienceOn
6 Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. Nano Lett. 2003, 3, 149.   DOI   ScienceOn
7 Duan, X. F.; Huang, Y.; Lieber, C. M. Nano Lett. 2002, 2, 487.   DOI   ScienceOn
8 Koh, Y.; Park, J.; Kim, J.; Jang, S.; Woo, H.-G.; Sohn, H. J. Nanosci. Nanotechnol. 2010, 10, 3590.   DOI   ScienceOn
9 Jang, S.; Kim, J.; Koh, Y.; Ko, Y. C.; Woo, H.-G.; Sohn, H. J. Nanosci. Nanotechnol. 2007, 7, 4049.   DOI   ScienceOn
10 Jang, S.; Koh, Y.; Kim, J.; Park, J.; Park, C.; Kim, S. J.; Cho, S.; Ko, Y. C.; Sohn, H. Mater. Lett. 2008, 62, 552.   DOI   ScienceOn
11 Park, C.; Kim, J.; Jang, S.; Woo, H.-G.; Ko, Y. C.; Sohn, H. J. Nanosci. Nanotechnol. 2010, 10, 3375.   DOI   ScienceOn
12 Kim, J.; Jang, S.; Koh, Y.; Park, C.; Woo, H.-G.; Kim, S.; Sohn, H. J. Nanosci. Nanotechnol. 2008, 8, 4951.   DOI   ScienceOn
13 Kim, S. G.; Kim, S.; Ko, Y. C.; Cho, S.; Sohn, H. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 313, 398.
14 Koh, Y.; Jang, S.; Kim, J.; Kim, S.; Ko, Y. C.; Cho, S.; Sohn, H. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 313, 328.
15 Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.   DOI
16 Wang, Y.; Schmidt, V.; Senz, S.; Gosele, U. Nat. Nanotechnol. 2006, 1, 186.   DOI   ScienceOn
17 Sivakov, V.; Heyroth, F.; Falk, F.; Andra, G.; Christiansen, S. H. J. Cryst. Growth 2007, 300, 288.   DOI   ScienceOn
18 Oh, S. H.; van Benthem, K.; Molina, S. I.; Borisevich, A. Y.; Luo, W.; Werner, P.; Zakharov, N. D.; Kumar, D.; Pantelides, S. T.; Pennycook, S. J. Nano Lett. 2008, 8, 1016.   DOI   ScienceOn
19 Sivakov, V.; Andra, G.; Himcinschi, C.; Gosele, U.; Zahn, D. R. T.; Christiansen, S. Appl. Phys. A: Mater. Sci. Process 2006, 85, 311.   DOI
20 Fuhrmann, B.; Leipner, H. S.; Hoche, H.-R.; Schubert, L.; Werner, P.; Gosele, U. Nano Lett. 2005, 5, 2524.   DOI   ScienceOn
21 Kawashima, T.; Mizutani, T.; Nakagawa, T.; Torii, H.; Saitoh, T.; Komori, K.; Fujii, M. Nano Lett. 2008, 8, 362.   DOI   ScienceOn
22 Gorostiza, P.; Kulandainathan, M. A.; Diaz, R.; Sanz, F.; Allongue, P.; Morante, J. R. J. Electrochem. Soc. 2000, 147, 1026.   DOI   ScienceOn
23 Porter, L. A.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M. Nano Lett. 2002, 2, 1067.   DOI   ScienceOn
24 Magagnin, L.; Maboudian, R.; Carraro, C.; J. Phys. Chem. B 2002, 106, 401.   DOI   ScienceOn
25 Peng, K.-Q.; Yan, Y.-J.; Gao, S.-P.; Zhu, J. Adv. Mater. 2002, 14, 1164.   DOI   ScienceOn
26 Peng, K.; Hu, J.; Yan, Y.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Adv. Funct. Mater. 2006, 16, 387.   DOI   ScienceOn
27 Peng, K.; Xu, Y.; Wu, Y.; Yan, Y.; Lee, S.-T.; Zhu, J. Small 2005, 1, 1062.   DOI   ScienceOn
28 Sohn, H.; Tan, R. P.; Powell, D. R.; West, R. Organometallics 1994, 13, 1390.   DOI   ScienceOn
29 Cho, E. J.; Lee, V.; Yoo, B. R.; Jung, I. N.; Sohn, H.; Powell, D. R.; West, R. Organometallics 1997, 16, 4200.   DOI   ScienceOn
30 Kennou, S.; Ladas, S.; Paloura, E. C.; Kalomiros, J. A. Appl. Surf. Sci. 1995, 90, 283.   DOI   ScienceOn