DOI QR코드

DOI QR Code

Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology

  • 김은지 (경북대학교 치의학전문대학원 치과보존학교실) ;
  • 이규복 (경북대학교 치의학전문대학원 치과보철학교실, 경북대학교 첨단치과의료기기개발연구소) ;
  • 진명욱 (경북대학교 치의학전문대학원 치과보존학교실)
  • Kim, Eun-Ji (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Department of Prosthodontics, School of Dentistry, A3DI, Kyungpook National University) ;
  • Jin, Myoung-Uk (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University)
  • 투고 : 2016.08.22
  • 심사 : 2016.09.13
  • 발행 : 2016.09.30

초록

목적: 중합 시간이 bulk fill 유동성 복합레진의 미세누출에 미치는 영향을 마이크로시티를 이용하여 평가하고자 하였다. 연구 재료 및 방법: 30개의 발거된 인간 대구치에 변형된 2급 와동인 vertical slot cavity를 형성하였다. SonicFill과 SureFil SDR flow을 단일 충전하였으며, 다른 중합시간(20, 40, 60초)으로 광중합 하였다. 모든 표본은 5000번의 thermal cycle을 시행하였다. 치아는 silver nitrate 용액에 24시간 동안 침전 후 8시간 동안 현상액에 침전하였다. 마이크로시티를 사용하여 시편을 촬영 후 침투된 silver nitrate solution을 3차원적으로 재건하여 그 부피를 측정하였다. 변연 누출 결과값의 통계 처리는 Mann-Whitney test를 사용하였다. 결과: 광중합 시간의 증가는 두 bulk fill 유동성 복합레진에서 변연 누출을 증가시켰다. 두 복합레진 사이 유의한 차이는 없었다. 결론: 중합 시간은 bulk fill 유동성 복합레진의 변연 누출을 증가시킬 수 있는 요인이었다. 또한 마이크로시티를 통해 레진-치아 계면에서 변연 누출의 양을 비파괴적 방법으로 3차원적으로 재건하여 측정할 수 있었다.

Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

키워드

참고문헌

  1. Mahmound SH, Al-Wakeel Eel S. Marginal adaptation of ormocer-, silorane-, and methacrylate-based composite restorative systems bonded to dentin cavities after water storage. Quintessence Int 2011; 42:e131-9.
  2. Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 2013;17:227-35. https://doi.org/10.1007/s00784-012-0702-8
  3. Ilie N, Hickel R. Investigations on a methacrylatebased flowable composite based on the SDR technology. Dent Mater 2011;27:348-55. https://doi.org/10.1016/j.dental.2010.11.014
  4. El-Damanhoury H, Platt J. Polymerization shrinkage stress kinetic and related properties of bulk-fill resin composites. Oper Dent 2014;39:374-82. https://doi.org/10.2341/13-017-L
  5. Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJ. Cuspal deflection and microleakage in premolar teeth restored with bulkfill flowable resin-based composite base materials. J Dent 2012;40:500-5. https://doi.org/10.1016/j.jdent.2012.02.015
  6. El-Safty S, Silikas N, Watts DC. Creep deformation of restorative resin-composites intended for bulkfill placement. Dent Mater 2012;28:928-35. https://doi.org/10.1016/j.dental.2012.04.038
  7. Naoum SJ, Ellakwa A, Morgan L, White K, Martin FE, Lee IB. Polymerization profile analysis of resin composite dental restorative materials in real time. J Dent 2012;40:64-70. https://doi.org/10.1016/j.jdent.2011.10.006
  8. Ilie N, Stark K. Curing behaviour of high-viscosity bulk-fill composites. J Dent 2014;42:977-85. https://doi.org/10.1016/j.jdent.2014.05.012
  9. Alrahlah A, Silikas N, Watts DC. Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater 2014;30:149-54. https://doi.org/10.1016/j.dental.2013.10.011
  10. Ilie N, Kessler A, Durner J. Influence of various irradiation processes on the mechanical properties and polymerization kinetics of bulk-fill resin based composites. J Dent 2013;41:695-702. https://doi.org/10.1016/j.jdent.2013.05.008
  11. Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 2012;28:521-8. https://doi.org/10.1016/j.dental.2012.02.002
  12. Abbas G, Fleming GJ, Harrington E, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent 2003;31:437-44. https://doi.org/10.1016/S0300-5712(02)00121-5
  13. Tiba A, Zeller GG, Estrich CG, Hong A. A laboratory evaluation of bulk-fill versus traditional multiincrement-fill resin-based composites. J Am Dent Assoc 2013;144:1182-3. https://doi.org/10.14219/jada.archive.2013.0040
  14. Watts DC. Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater 2005;21:27-35. https://doi.org/10.1016/j.dental.2004.10.003
  15. Yoon TH, Lee YK, Lim BS, Kim CW. Degree of polymerization of resin composites by different light sources. J Oral Rehabil 2002;29:1165-73. https://doi.org/10.1046/j.1365-2842.2002.00970.x
  16. Price RB, Ehrnford L, Andreous P, Felix CA. Comparison of quartz-tungsten-halogen, light-emitting diode, and plasma arc curing lights. J Adhes Dent 2003;5:193-207.
  17. Rueggeberg F. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl 1999;25:S4-S15.
  18. Visvanathan A, Ilie N, Hickel R, Kunzelmann KH. The influence of curing times and light curing methods on the polymerization shrinkage stress of a shrinkage-optimized composite with hybrid-type prepolymer fillers. Dent Mater 2007;23:777-84. https://doi.org/10.1016/j.dental.2006.06.019
  19. Dewaele M, Asmussen E, Devaux J, Leloup G. Class II restorations: influence of a liner with rubbery qualities on the occurrence and size of cervical gaps. Eur J Oral Sci 2006;114:535-541. https://doi.org/10.1111/j.1600-0722.2006.00407.x
  20. Feilzer AJ, Dooren LH, de GEE AJ, Davidson CL. Influence of light intensity on polymerization shrinkage and integrity of restoration-cavity interface. Eur J Oral Sci 1995;103:322-6. https://doi.org/10.1111/j.1600-0722.1995.tb00033.x
  21. Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin monomers. Dent Mater 2006; 22:785-91. https://doi.org/10.1016/j.dental.2006.02.009
  22. Pongprueksa P, Kuphasuk W, Senawongse P. The elastic moduli across various types of resin/dentin interfaces. Dent Mater 2008;24:1102-6. https://doi.org/10.1016/j.dental.2007.12.008
  23. Bouschlicher MR, Rueggeberg FA, Boyer DB. Effect of stepped light intensity on polymerization force and conversion in a photoactivated composite. J Esthet Dent 2000;12:23-32. https://doi.org/10.1111/j.1708-8240.2000.tb00195.x
  24. Ilie N, Stark K. Curing behaviour of high-viscosity bulk-fill composites. J Dent 2014;42:977-85. https://doi.org/10.1016/j.jdent.2014.05.012
  25. Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013;38:618-25. https://doi.org/10.2341/12-395-L
  26. Li X, Pongprueksa P, Van Meerbeek B, De Munck J. Curing profile of bulk-fill resin-based composites. J Dent 2015;43:664-72. https://doi.org/10.1016/j.jdent.2015.01.002
  27. Garcia D, Yaman P, Dennison J, Neiva G. Polymerization shrinkage and depth of cure of bulk fill flowable composite resins. Oper Dent 2014;39:441-8. https://doi.org/10.2341/12-484-L
  28. Benetti AR, Havndrup-Pedersen C, Honore D, Pedersen MK, Pallesen U. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent 2015;40:190-200. https://doi.org/10.2341/13-324-L
  29. Jang JH, Park SH, Hwang IN. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent 2015;40:172-80. https://doi.org/10.2341/13-307-L
  30. Eden E, Topaloglu-AK A, Cuijpers V, Frenchen JE. Micro-CT for measuring marginal leakage of Class II resin composite restorations in primary molars prepared in vivo. Am J Dent 2008;21:393-7.
  31. Zhao XY, Li SB, Gu LJ, Li Y. Detection of marginal leakage of Class V restorations in vitro by microcomputed tomography. Oper Dent 2014;39:174-80. https://doi.org/10.2341/12-182-L
  32. Chen X, Cuijpers VM, Fan MW, Frencken JE. Validation of micro-CT against the section method regarding the assessment of marginal leakage of sealant. Aust Dent J 2012;57:196-9. https://doi.org/10.1111/j.1834-7819.2012.01687.x
  33. Raskin A, Tassery H, D'Hoore W, Gonthier S, Vreven J, Degrange M, Dejou J. Influence of the number of sections on reliability of in vitro microleakage evaluations. Am J Dent 2003;16:207-10.
  34. Abdalla AI, Davidson CL. Comparison of the marginal integrity of in vivo and in vitro Class II composite restorations. J Dent 1993;21:158-62. https://doi.org/10.1016/0300-5712(93)90026-M

피인용 문헌

  1. Marginal and Internal Adaptation Evaluation of Dental Composites Using Micro-CT vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5010319