• Title/Summary/Keyword: silver electrode

Search Result 247, Processing Time 0.025 seconds

Bonding Strength of Conductive Inner-Electrode Layers in Piezoelectric Multilayer Ceramics

  • Wang, Yiping;Yang, Ying;Zheng, Bingjin;Chen, Jing;Yao, Jinyi;Sheng, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.181-184
    • /
    • 2017
  • Multilayer ceramics in which piezoelectric layers of $0.90Pb(Zr_{0.48}Ti_{0.52})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.05Pb(Zn_{1/3}Nb_{2/3})O_3$ (0.90PZT-0.05PMS-0.05PZN) stack alternately with silver electrode layers were prepared by an advanced low-temperature co-fired ceramic (LTCC) method. The electrical properties and bonding strength of the multilayers were associated with the interface morphologies between the piezoelectric and silver-electrode layers. Usually, the inner silver electrodes are fabricated by sintering silver paste in multi-layer stacks. To improve the interface bonding strength, piezoelectric powders of 0.90PZT-0.05PMS-0.05PZN with an average particle size of $23{\mu}m$ were added to silver paste to form a gradient interface. SEM observation indicated clear interfaces in multilayer ceramics without powder addition. With the increase of piezoelectric powder addition in the silver paste, gradient interfaces were successfully obtained. The multilayer ceramics with gradient interfaces present greater bonding strength as well as excellent piezoelectric properties for 30~40 wt% of added powder. On the other hand, over addition greatly increased the resistance of the inner silver electrodes, leading to a piezoelectric behavior like that of bulk ceramics in multilayers.

A New PVC-Membrane Electrode Based on a Thia-Substituted Macrocyclic Diamide for Selective Potentiometric Determination of Silver Ion

  • Shamsipur, Mojtaba;Kazemi, Sayed Yahya;Niknam, Khodabaksh;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • A new PVC-membrane electrode for $Ag^+$ ion based on a thia-substituted macrocyclic diamide has been prepared. The electrode exhibited a Nernstian response for $Ag^+$ over a wide concentration range $(1.7{\times}10^{-6}-1.0{\times}10^{-1}M)$. It has a response time <15 s and can be used for at least 3 months without divergence. The proposed membrane sensor revealed good selectivities for $Ag^+$ over a variety of metal ions and can be used in a pH range 3.0-7.5. It has been used successfully for direct determination of $Ag^+$ in different real samples and, as an indicator electrode, in the titration of silver ion.

Electrochemical Characteristics of the Oxygen Electrode for Alkaline Fuel Cells -Impregnation of Silver Catalyst on Carbon Black with Colloidal Method- (알칼리형 연료전지용 산소극의 전기화학적 특성고찰 -콜로이드 방법에 의한 카본블랙상 은촉매담지-)

  • Lee, Hong-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.701-709
    • /
    • 1992
  • Silver particles were impregnated on carbon black with colloidal method and used as catalyst for oxygen electrode in alkaline fuel cell. With the addition of sodium dodecylbenzenesulfonate in $AgNO_3$ and $NaBH_4$solution, colloidal solution was made and confirmed with electrophoresis test. Effects of particle size on electrode performance were studied and $200{\AA}$ of silver particle size shown the highest value of mass activity. The aggromeration of silver particle was Influenced with surfactant amount, stirring time and heat treatment. Considering the increase of particle size caused of operating temperature, recommendable particle size of silver catalyst for manufacturing the electrode was $100{\AA}$. Dispersity of carbon black was investigated and reagglomeration was appeared after homogenizing 30 sec.

  • PDF

Silver Nanowire-Based Stretchable Transparent Electrodes for Deformable Organic Light-Emitting Diodes (신축성 유기발광다이오드를 위한 은 나노와이어 기반의 신축성 투명 전극 기판 연구)

  • Jung, Hyunsu;Go, Hyeck;Park, Gye-Choon;Yun, Changhun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.609-614
    • /
    • 2017
  • The proposed stretchable transparent electrodes based on silver nanowires (AgNWs) were prepared on a polyurethane (PU) substrate. In order toavoid the surface roughness caused by the silver nanowires, a titanium oxide ($TiO_2$) buffer layer was addedby coating and heating the organometallic sol-gel solution. The fabricated stretchable electrodes showedan electrical sheet resistance of $24{\Omega}sq^{-1}$, 78% transmittance at 550 nm, and an average surface roughness below 5 nm. Furthermore, the AgNW-based electrode maintained its initial electrical resistance under 130% strain testing conditions, without the assistance of additional conductive polymer layers. In this paper, the critical role of the $TiO_2$ buffer layer between the AgNW network and the PU substrate has been discussed.

Characteristics of Silver Nanow ire Solution and Film Depending on Hydroxypropyl Methylcellulose Adhesion Promoter Addition (Hydroxypropyl methylcellulose 접착력 증진제 첨가에 따른 은 나노와이어 용액 및 필름의 특성 변화)

  • Seungju Kang;Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.54-59
    • /
    • 2023
  • Silver nanowire-based transparent electrodes are very attractive as a next-generation flexible and transparent electrode that can replace ITO-based flexible electrodes because they have excellent conductivity, transmittance and mechanical flexibility. However, weak understanding of the silver nanowire solution for the fabrication of silver nanowire-based transparent electrodes often cause abnormal operation of the electrical device or peeling problem of the electrode films when applied to electronic devices. Here, we studied a Hydroxypropyl Methylcellulose (HPMC) adhesion promoter, which is one of the additives for silver nanowire solution, to improve the understanding of silver nanowire solution. In detail, it is characterized how the HPMC changes the properties of silver nanowire solution and silver nanowire film, which is fabricated with silver nanowire solution including the HPMC adhesion promoter. As the characteristics of solution, polar surface tension and dispersive surface tension were measured. As the film characteristics, surface energy, surface morphology, silver nanowire density, and sheet resistance were analyzed.

Degradation and Failure Analysis of Lead-free Silver Electrodes with Thermal Cycling (무연계 Ag 외부전극재의 열충격에 따른 열화특성과 고장해석)

  • Kim, Jung-Woo;Yoon, Dong-Chul;Lee, Hee-Soo;Jeon, Min-Seok;Song, Jun-Kwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.434-439
    • /
    • 2008
  • Silver pastes as the outer electrodes have been prepared using Pb-free glass frits with different content of $Bi_2O_3$ and the effects of glass composition on the degradation behaviors of the Ag electrodes were investigated using the change of adhesion between Ag electrode and alumina substrate with thermal cycle stress. Low adhesion and high surface resistance were observed in Ag electrode using glass frit with a $Bi_2O_3$ content of 60 wt%, owing to the open microstructure formed at the firing temperature of $600^{\circ}C$. When the $Bi_2O_3$ was increased to 80 wt% in the glass frit, the Ag electrodes had a dense microstructure with high adhesion and a low surface resistance. Delamination of the Ag electrodes was a major failure mode under thermal cycle stress and this was attributed to residual stress due to the thermal expansion mismatch between the Ag electrode and the alumina substrate.

Preperation of catalyst having high activity on oxygen reduction (저온형 연료전지용 산소의 고활성 환원 촉매 제조)

  • 김영우;김형진;이주성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.39-40
    • /
    • 1992
  • This paper dealt with the manufacturing of binary alloy catalyst and showed simple electrochemical method for determing catalytic activity of oxygen reduction in acid or alkaline electrolyte. The catalyst was prepared by impregnating transition metal salts on platinum or silver particles adsorbed before on carbon paper substrate. The electrochemical characteristics of the catalysts was investigated with carbon paper electrode or PTFE-boned porous electrode and then cathodic current densities and tafel slopes were compared. As a result, of all binary catalysts utilized in this work, Pt-Fe, Pt-Mo showed better oxygen reduction activity than pure platinum catalyst in acid electrolyte and Ag-Fe, Ag-Pt, and Ag-Ni-Bi-Ti catalyst did than pure silver catalyst in alkaline electrolyte. The current density of Pt-Fe electrode in acid electrolyte was one and half times higher than that of Pt electrode(~500mA/$\textrm{cm}^2$ at 0.7VvsNHE).

  • PDF

Characteristics of Silver Electrode Formed from Nano-Sized Silver and Glass Powders (나노 크기의 실버 및 글래스 분말로부터 형성된 실버 전극의 특성)

  • Koo, Hye Young;Kim, Jung Hyun;Yi, Jang Heui;Ko, You Na;Kang, Yun Chan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.570-574
    • /
    • 2010
  • Silver conducting films were formed from nano-sized silver powders and glass frits prepared by flame spray pyrolysis. The mean sizes of the silver powders and glass frits were 73 and 63 nm, respectively. Nano-sized glass frits improved the adhesion strength of the silver conducting film to the glass substrate. The densities of the silver conducting films increased by increasing the glass contents of the films at firing temperatures of 400 and $500{^{\circ}C}$. The specific resistances of the silver conducting films with 5 wt.% glass of silver component were 7.8, 4.2 and 2.4 cm at firing temperatures of 400, 450 and $500{^{\circ}C}$.

Stretchable Electrode Properties Study According to Particle Size of Flake-type Ag Powders (Flake-type Ag분말의 입자크기에 따른 신축성 전극 특성 연구)

  • Nam, Hyun Min;Sea, Min Ho;Nam, Su Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the average particle size of silver powder was 2㎛, 7㎛, and a mixture of these (50:50wt%), three kinds of silver pastes were prepared. In addition, as a result of examining the viscosity and viscoelasticity of the three silver pastes, TGA measurement, resistance change according to strain, and change in surface structure of the electrode, the following conclusions were obtained. Summarizing these results, it was found that it is most desirable to have a particle size of about 2㎛ in order to minimize the change in resistance due to strain.

Electrical Conductance and Electrode Reaction of $RbAg_4I_5$ Single Crystals (고체전해질 $RbAg_4I_5$ 단결정의 전기전도성과 전극반응)

  • Jong Hee Park;Woon-Kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 1980
  • The electrical conductivity of solid electrolyte $RbAg_4I_5$ single crystal was studied at various temperatures. The four-probe method was used in measuring the conductance with an ac signal imposed on the specimen. The ionic conductivity was $0.284 ohm^{-1} cm^{-1}\;at\;25^{\circ}C$, and the activation energy for $Ag^+$ ion migration was calulated to be 1.70 kcal/mole. These values agree well with those reported for polycrystalline samples. Reactions at $Ag/RbAg_4I_5$ interface were studied by cyclic voltammetry with a silver reference electrode. It was found that silver ion is reversibly reduced at silver surfaces below zero volt, and iodide was oxidized above +0.67 volt.The anodic current arising from the oxidation of the electrode was small in magnitude initially over a wide range of potential, but, after silver was cathodically deposited on the electrode, reversing the potential sweep to the anodic direction resulted in a sharp peak of anodic current.

  • PDF