DOI QR코드

DOI QR Code

Stretchable Electrode Properties Study According to Particle Size of Flake-type Ag Powders

Flake-type Ag분말의 입자크기에 따른 신축성 전극 특성 연구

  • Nam, Hyun Min (Department of Nanotechnology Engineering, Pukyong National University) ;
  • Sea, Min Ho (Department of Nanotechnology Engineering, Pukyong National University) ;
  • Nam, Su Yong (Department of Nanotechnology Engineering, Pukyong National University)
  • 남현민 (국립부경대학교 나노융합공학과) ;
  • 서민호 (국립부경대학교 나노융합공학과) ;
  • 남수용 (국립부경대학교 나노융합공학과)
  • Received : 2022.12.08
  • Accepted : 2022.12.23
  • Published : 2022.12.30

Abstract

In this study, the average particle size of silver powder was 2㎛, 7㎛, and a mixture of these (50:50wt%), three kinds of silver pastes were prepared. In addition, as a result of examining the viscosity and viscoelasticity of the three silver pastes, TGA measurement, resistance change according to strain, and change in surface structure of the electrode, the following conclusions were obtained. Summarizing these results, it was found that it is most desirable to have a particle size of about 2㎛ in order to minimize the change in resistance due to strain.

본 연구에서는 실버 파우더의 입자 크기, 즉 평균입자 크기가 2㎛, 7㎛, 이들의 혼합(50:50wt%), 이렇게 3가지 실버 페이스트를 제조하여 점도 및 점탄성, 경화후에 잔류용제 유무 확인을 위한 TGA측정, Strain에 따른 저항변화 및 전극 표면구조 변화에 대해서 검토한 결과 다음과 같은 결론을 얻을 수 있었다. 이러한 결과를 정리하면 Strain에 따른 저항변화를 최소화하기 위해서는 실버 파우더의 입자를 2㎛정도인 것이 가장 바람직함을 알 수 있었다.

Keywords

Acknowledgement

이 논문은 국가과학기술연구회 창의형융합연구사업(MSIT-No. CAP22081-101)에 의하여 연구되었음

References

  1. S. M. Lee, J. E. Lim, and H. K. Kim, "Technical trend of strechable electrodes", Vacume Magazine, 06, 15 (2017).
  2. D. H. Kim, J. Xkao, J. Song, Y. Huang, and J. A. Roger, Adv. Mater, 22, 2108 (2010). https://doi.org/10.1002/adma.200902927
  3. E. H. Ko, H. J. Kim, S. M. Lee, T. W. Kim, and H. K. Kim, Sci., Rep., 7, 46739 (2017). https://doi.org/10.1038/srep46739
  4. D. J. Kim, S. Y. Nam, Y. S. Kim, and S. Y. Nam, "A Studies on the Characterisics of Reliablity test by Touch Screen Ag paste", J. Kor. Soc. Imag. Sci. Tech., 18(1), 1 (2012).
  5. M. Amjadi, Y. J. Yoon, and I. Park, "Ultra-stretchable and skin mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites", Nanotechnology, 26(37), 375501 (2015). https://doi.org/10.1088/0957-4484/26/37/375501
  6. T. Q. Trung and N. E. Lee, "Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoring and Personal Healthcare", Adv. Mater., 28(22), 4338 (2016). https://doi.org/10.1002/adma.201504244
  7. M. Amjadi, K. U Kyung, I, K. Park, and M. Sitti, "Stretchable, Skin Mountable, and Wearable Strain Sensor and Their Potential Applications: A Review", Adv. Funct. Mater, 26(11), 1678 (2016). https://doi.org/10.1002/adfm.201504755
  8. S. Yang, J. C. Yoon, J. Y. Yun, T. S. Lim, Y. J. Kim, and J. H. Yu,"Preparation of conductive metal patterns using Cu nano-colloids prepared by electrical wire explosion process", Res. Chem. Intermed., 40(7), 2457 (2014). https://doi.org/10.1007/s11164-014-1654-1
  9. W. Honda, S. Honda, T. Arie, S. Akita, and K. Takei, "Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques", Adv. Funct. Mater., 24(22), 3299 (2014). https://doi.org/10.1002/adfm.201303874
  10. J. Suikkola, T. Bjornimen, M. Mosallaei, T. Kankkunen, P. Iso-Ketola, L. Ukkonen, J. Vanhaka, and M. Mantysalo, "Screen-Printing Fabrication and Characterization os Strechable Electronics", Sci. Rep., (6)1, 1 (2016). https://doi.org/10.1038/s41598-016-0001-8
  11. N. Matsushisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, and T. Someya, "Printable elastic conductors with a high conductivity for electronic textile applications", Nat. Commun., (6)1, 1 (2015).
  12. C. K. Lim, Y. S. Lee, S. H. Choa, D. Y. Lee, L. S. Park, and S. Y. Nam, "Effect of Polymer Binder on the Transparent Conducting Electrodes on Strechable Film Fabricated by Screen Printing of Silver Paste", Int. J. Polym. Sci., 2017 (2017).
  13. T. H. Phung, A. N. Gafurov, I. N. Kim, S. Y. Kim, K. M. Kim, and T. M. Lee, "IoT device fabrication using roll-to-roll printing process." Scientific Reports, 11(1), 1 (2021). https://doi.org/10.1038/s41598-020-79139-8
  14. M. J. Son, I. Y. Kim, S. S. Yang, T. M. Lee, and H. J. Lee, "Employment of roll-offset printing for fabrication of solder bump arrays: Harnessing the rheological properties of lead-free solder pastes using particle size distribution," Microelectronic Engineering, 164, 128 (2016). https://doi.org/10.1016/j.mee.2016.07.012
  15. T. M. Lee, Y. J. Choi, S. Y. Nam, C. W. You, D. Y. Na, H. C. Choi, D. Y. Shin, K. Y. Kim, and K. I. Jung, "Color Filter Patterned by Screen Printing," Thin Solid Films, 516(21), 7578 (2008).