DOI QR코드

DOI QR Code

A New PVC-Membrane Electrode Based on a Thia-Substituted Macrocyclic Diamide for Selective Potentiometric Determination of Silver Ion

  • Published : 2002.01.20

Abstract

A new PVC-membrane electrode for $Ag^+$ ion based on a thia-substituted macrocyclic diamide has been prepared. The electrode exhibited a Nernstian response for $Ag^+$ over a wide concentration range $(1.7{\times}10^{-6}-1.0{\times}10^{-1}M)$. It has a response time <15 s and can be used for at least 3 months without divergence. The proposed membrane sensor revealed good selectivities for $Ag^+$ over a variety of metal ions and can be used in a pH range 3.0-7.5. It has been used successfully for direct determination of $Ag^+$ in different real samples and, as an indicator electrode, in the titration of silver ion.

Keywords

References

  1. Janata, J.; Jasowicz, M.; DeVaney, D. M. Anal. Chem. 1994, 66, 207R https://doi.org/10.1021/ac00084a010
  2. De Marco, R. Anal. Chem. 1994, 66, 3202 https://doi.org/10.1021/ac00091a033
  3. Mayerhoff, M. E.; Opdyche, M. N. Adv. Clin. Chem. 1986, 25, 1 https://doi.org/10.1016/S0065-2423(08)60123-7
  4. Moody, G. J.; Saad, B. B.; Thomas, J. D. R. Sel. Electrode Rev. 1988, 10, 71
  5. Kimura, K.; Shono, T. In Cation Binding by Macrocycles; Inoue, Y., Gokel, G. W., Eds.; Marcel Dekker: New York, 1990
  6. Janata, J. Anal. Chem. 1994, 64, 196R https://doi.org/10.1021/ac00036a012
  7. Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593 and references therein https://doi.org/10.1021/cr970113+
  8. Brzozka, Z. Analyst 1988, 113, 1803 https://doi.org/10.1039/an9881301803
  9. Siswanta, D.; Nagatsuka, K.; Yamada, H.; Kumakura, K.; Hisamoto, H.; Shichi, Y.; Toshima, K.; Suzuki, K. Anal. Chem. 1996, 68, 1272 https://doi.org/10.1021/ac9507000
  10. Yang, S.; Kumar, N.; Chi, H.; Hibbert, D. B.; Alexander, P. W. Electroanalysis 1997, 9, 549 https://doi.org/10.1002/elan.1140090709
  11. Gupta, V. K.; Jain, S.; Khurana, U. Electroanalysis 1997, 9, 478 https://doi.org/10.1002/elan.1140090609
  12. Fakhari, A. R.; Ganjali, M. R.; Shamsipur, M. Anal. Chem. 1997, 69, 3693 https://doi.org/10.1021/ac970133b
  13. Fakhari, A. R.; Alaghemand, M.; Shamsipur, M. Anal. Lett. 2000, 33, 2169 https://doi.org/10.1080/00032710008543181
  14. An, H.; Bradshaw, J. S.; Izatt, R. M. Chem. Rev. 1992, 92, 543 https://doi.org/10.1021/cr00012a004
  15. An, H.; Bradshaw, J. S.; Izatt, R. M.; Yan, Z. Chem. Rev. 1994, 94, 939 https://doi.org/10.1021/cr00028a005
  16. Gibson, H. W.; Nagvekar, D. S. Can. J. Chem. 1997, 75, 1375 https://doi.org/10.1139/v97-165
  17. Ibrahim, Y. A.; Elwahy, A. H. M. Synthesis 1993, 503
  18. Sharghi, H.; Eshghi, H. Tetrahedron 1995, 51, 913 https://doi.org/10.1016/0040-4020(94)00980-9
  19. Fukuda, N.; Ohtsu, T.; Miwa, M.; Mashino, M.; Takoda, Y. Bull. Chem. Soc. Jpn. 1996, 69, 1397 https://doi.org/10.1246/bcsj.69.1397
  20. Ganjali, M. R.; Eshghi, H.; Sharghi, H.; Shamsipur, M. J. Electronal. Chem. 1996, 405, 177 https://doi.org/10.1016/0022-0728(95)04413-2
  21. Kumar, S.; Handal, G.; Kaur, N.; Handal, M. S.; Singh, M. Tetrahedron Lett. 1997, 38, 131 https://doi.org/10.1016/S0040-4039(96)02234-4
  22. Adam, K. R.; Lindoy, L. F.; Lip, H. C.; Rea, J. H.; Skehon, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1981, 74
  23. Paredes, R. S.; Vaiera, N. S.; Lindoy, L. F. Aust. J. Chem. 1986, 39, 1071 https://doi.org/10.1071/CH9861071
  24. Adam, K. R.; Baldwin, D.; Duckworth, P. A.; Leong, A. J.; Lindoy, L. F.; McPartlin, M.; Tasker, P. D. J. Chem. Soc., Chem Commun. 1987, 1124
  25. Adam, K. R.; Leong, A. J.; Lindoy, L. F. J. Chem. Soc., Dalton Trans. 1988, 1733
  26. Attiyat, A. S.; Ibrahim, Y. A.; Kadry, A. M.; Xie, R. Y.; Christian, G. D. Fresenius Z. Anal. Chem. 1987, 12, 239
  27. Malinowska, E.; Jurczak, J.; Stankiewicz, T. Electroana- lysis 1993, 5, 489 https://doi.org/10.1002/elan.1140050518
  28. Shamsipur, M.; Rouhani, S.; Sharghi, H.; Ganjali, M. R.; Eshghi, H. Anal. Chem. 1999, 71, 4938 https://doi.org/10.1021/ac990167e
  29. Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Sharghi, H.; Eshghi, H. Sens. Actuators B 1999, 59, 30 https://doi.org/10.1016/S0925-4005(99)00160-4
  30. Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Eshghi, H.; Sharghi, H. Microchem. J. 1999, 63, 202 https://doi.org/10.1006/mchj.1999.1784
  31. Javanbakht, M.; Ganjali, M. R.; Eshghi, H.; Sharghi, H.; Shamsipur, M. Electroanalysis 1999, 11, 81 https://doi.org/10.1002/(SICI)1521-4109(199902)11:2<81::AID-ELAN81>3.0.CO;2-Q
  32. Kamata, S.; Bhale, A.; Fukunaga, Y.; Murata, H. Anal. Chem. 1978, 60, 2464 https://doi.org/10.1021/ac00173a006
  33. Renner, H. In Ulmanns Enyclopadie der Technischen-Chemie, $4^{th}$ed.; Verlag Chemie: Weinheim, 1982; Vol. 21
  34. Soager, R. Metallic Raw Materials Dictionary; Bank Tobel: Zurick, 1984
  35. Shamsipur, M.; Mashhadizadeh, M. H. Fresenius J. Anal. Chem. 2000, 367, 246 https://doi.org/10.1007/s002169900303
  36. Siswanta, D.; Nagatsuka, K.; Yamada, H.; Kumakura, K.; Hisamoto, H.; Shichi, Y.; Toshima, K.; Suzuki, K. Anal. Chem. 1996, 68, 4166 https://doi.org/10.1021/ac960396q
  37. Chung, S.; Kim, W.; Park, S. B.; Kim, D. Y.; Lee, S.S. Talanta 1997, 44, 1291 https://doi.org/10.1016/S0039-9140(97)00010-6
  38. Lee, S. S.; Ahn, M.-K.; Park, S. B. Analyst 1998, 123, 383 https://doi.org/10.1039/a707252j
  39. Mashhadizadeh, M. H.; Shamsipur, M. Anal. Chim. Acta 1999, 381, 111 https://doi.org/10.1016/S0003-2670(98)00672-2
  40. Liu, D.; Liu, J.; Tian, D.; Hong, W.; Zhou, X.; Yu, J. C. Anal. Chim. Acta 2000, 416, 139 https://doi.org/10.1016/S0003-2670(00)00902-8
  41. Anker, P.; Wieland, E.; Ammann, D.; Dohner, R. E.; Asper, R.; Simon, W. Anal. Chem. 1981, 53, 1970 https://doi.org/10.1021/ac00236a005
  42. Armstrong, R. D.; Todd, M. J. Electroanal. Chem. 1988, 257, 161 https://doi.org/10.1016/0022-0728(88)87039-6
  43. Verpoorte, E. M. J.; Chan, A. D. C.; Harrison, D. J. Electroanal. 1993, 5, 845 https://doi.org/10.1002/elan.1140050920
  44. Bakker, E.; Buhlamann, P.; Pretsch, E. Chem. Rev. 1997, 97, 3033
  45. Schaller, U.; Bakker, E.; Spichiger, U. E.; Pretsch, E. Anal. Chem. 1994, 66, 391 https://doi.org/10.1021/ac00075a013
  46. Ammann, D.; Pretsch, E.; Simon, W.; Lindner, E.; Bezegh, A.; Poungor, E. Anal. Chim. Acta 1985, 171, 119 https://doi.org/10.1016/S0003-2670(00)84189-6
  47. Eugster, E.; Gehring, P. M.; Morf, W. E.; Spichiger, U.; Simon, W. Anal. Chem. 1991, 63, 2285 https://doi.org/10.1021/ac00020a017
  48. Rostazin, T. ; Bakker, E.; Suzuki, K.; Simon, W. Anal. Chem. 1994, 66, 391 https://doi.org/10.1021/ac00075a013
  49. Ammann, D.; Morf, W. E.; Anker, P.; Meier, P. C.; Pretsch, E.; Simon, W. Ion-Sel. Electrode Rev. 1983, 5, 3 https://doi.org/10.1016/B978-0-08-031492-1.50005-X
  50. Sun, B.; Fitch, P. G. Electroanalysis 1997, 9, 494 https://doi.org/10.1002/elan.1140090612
  51. Bakker, E. Electroanalysis 1997, 9, 7 https://doi.org/10.1002/elan.1140090103
  52. Poungor, E.; Toth, K. Anal. Chim. Acta 1969, 47, 29
  53. Srinivasan, K.; Rechnitz, G. A. Anal. Chem. 1969, 41, 1203 https://doi.org/10.1021/ac60279a014
  54. Hancock, R. D.; Martell, A. E. J. Chem. Educ. 1996, 73, 654 https://doi.org/10.1021/ed073p654

Cited by

  1. Design of a Selective and Sensitive PVC-Membrane Potentiometric Sensor for Strontium Ion Based on 1,10-Diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dioneas a Neutral Ionophore vol.7, pp.4, 2007, https://doi.org/10.3390/s7040438
  2. Novel thiocyanate ion-selective electrodes based on a copper(II) complex of p-hydroxyacetophenone thiosemicarbazone as a carrier vol.144, pp.5, 2013, https://doi.org/10.1007/s00706-012-0884-4
  3. Experimental design as an optimization approach for fabrication a new selective sensor for thallium(I) based on calix[6]arene vol.69, pp.7, 2014, https://doi.org/10.1134/S1061934814070089
  4. Synthesis, metal ion complexation and first use of a thia-aza substituted macrocyclic diamide as a novel sensing material for preparation of selective and sensitive poly(vinyl chloride)-membrane potentiometric sensors for Ag+ ion vol.79, pp.1-2, 2014, https://doi.org/10.1007/s10847-013-0327-9
  5. Silver(I)-Selective PVC Membrane Potentiometric Sensor Based on a Recently Synthesized Calix[4]arene vol.18, pp.10, 2006, https://doi.org/10.1002/elan.200503494
  6. Highly Selective and Sensitive Membrane Sensors for Copper(II) Ion Based on a New Benzo-Substituted Macrocyclic Diamide 6,7,8,9,10-Hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopentadecine-3,11(4H,12H)-dione vol.19, pp.5, 2007, https://doi.org/10.1002/elan.200603768
  7. Mercury-selective membrane electrode based on methyl substituted dibenzo tetraphenyl tetraaza macrocycle vol.60, pp.1-2, 2008, https://doi.org/10.1007/s10847-007-9344-x
  8. Mercury selective membrane electrode based on dithio derivatized macrotricyclic compound vol.64, pp.1-2, 2009, https://doi.org/10.1007/s10847-009-9541-x
  9. Highly Selective Triiodide Polymeric Membrane Electrode Based on Tetra(p-chlorophenyl)porphyrinato Manganese (Ⅲ) Acetate vol.23, pp.11, 2002, https://doi.org/10.5012/bkcs.2002.23.11.1635
  10. Mercury(II)-selective membrane electrode using tetrathia-diazacyclotetradeca-2,9-diene as neutral carrier vol.99, pp.1, 2004, https://doi.org/10.1016/j.snb.2003.09.004
  11. Potentiometric flow injection analysis of mebeverine hydrochloride in serum and urine vol.36, pp.5, 2005, https://doi.org/10.1016/j.jpba.2004.08.032
  12. Silver(I)-selective electrode based on [Bz2Oxo4(18)dieneS4] tetrathia macrocyclic carrier vol.385, pp.1, 2006, https://doi.org/10.1007/s00216-006-0385-6
  13. Membrane Transport of Pb(II) with a Cooperative Carrier Composed of Dibenzyldiaza-18-Crown-6 and Palmitic Acid vol.55, pp.5, 2008, https://doi.org/10.1002/jccs.200800161
  14. A New Selective Membrane Electrode for Oxalate Based on N,N'-Bis(salicylidene)-2,2-dimethylpropane-1,3-diamine Ni(II) vol.29, pp.2, 2002, https://doi.org/10.5012/bkcs.2008.29.2.398
  15. Lead-selective poly(vinyl chloride) electrodes based on some synthesized benzo-substituted macrocyclic diamides vol.172, pp.1, 2009, https://doi.org/10.1016/j.jhazmat.2009.06.145
  16. Novel PVC-membrane potentiometric sensors based on a recently synthesized sulfur-containing macrocyclic diamide for Cd2+ ion. Application to flow-injection potentiometry vol.172, pp.2, 2002, https://doi.org/10.1016/j.jhazmat.2009.07.003
  17. A Novel Potentiometric PVC-membrane Cysteamine-Selective Electrode Based on Cysteamine-Phosphomolybdate Ion-Pair vol.16, pp.2, 2020, https://doi.org/10.2174/1573412914666181017150529
  18. A fluorescent nanoprobe based on AIEgen: Visualization of silver ions and sensing applications in cancer cells and S. aureus vol.198, pp.None, 2022, https://doi.org/10.1016/j.dyepig.2021.110027