• Title/Summary/Keyword: silicon sensor

Search Result 532, Processing Time 0.026 seconds

Magnetic Sensitivity Improvement of Silicon Vertical Hall Device (Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo;Kim, Nam-Ho;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2011
  • The silicon vertical hall devices are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$, interface and n-epi layer without $n^+$buried layer to improve the sensitivity and influence of interface effects. Experimental samples are a sensor type I with and type H without p+isolation dam adjacent to the center current electrode. The experimental results for both type show a more high current-related sensitivity than the former's vertical hall devices. The sensitivity of type H and type I are about 150 V/AT and 340 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.

A study on the optimization of the film sensing part for measuring heart rate in wrist (손목에서의 맥박 측정을 위한 필름 센서부 최적화에 관한 연구)

  • Jo, Sung-Hyun;Kim, Sheen-Ja;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.241-244
    • /
    • 2009
  • We studied the optimization method of sensing part for measuring heart rate in wrist. In order to know optimum structure of sensing part, we measured the heart rate signal by changing the shape and size of sensor pad structure and the thickness of silicon. The shapes of structure using in experiment are Empty, Rectangle, Embossing, Length, Width. We were compared the amplitude of output signal about each shape when thickness of silicon pad is increasing from 0 to 7 mm by 1 mm.

  • PDF

Pressure sensor using shear piezoresistance of polysilicon films (폴리실리콘의 전단 압저항현상을 이용한 압력센서)

  • Park, Sung-June;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.31-37
    • /
    • 1996
  • This paper presents characteristics of pressure sensor using shear-type piezoresistor of LPCVD(low pressure chemical vapour deposition) grown polycrystalline silicon films. The sensor has 3.1mV/V of pressure sensitivity in the pressure range of $1kgf/cm^{2}$, ${\pm}0.012%FS/^{\circ}C$ of TCO, and ${\pm}0.08%FS/^{\circ}C$ of TCS in the temperature range of $-20{\sim}+125^{\circ}C$. It showed ${\pm}0.2%FS$ of hysteresis and ${\pm}1.5%FS$ of non-linearity. Shear-type polycrystalline silicon pressure sensor can eliminate temperature dependence of offset caused by resistors mismatch and be used in relatively wide temperature range, compared to the conventional full-bridge silicon pressure sensors.

  • PDF

Silicon Nitride Cantilever Arrays Integrated with Si Heater and Piezoelectric Sensors for SPM Data Storage Applications

  • Nam, Hyo-Jin;Jang, Seong-Soo;Kim, Young-Sik;Lee, Caroline-Sunyong;Jin, Won-Hyeog;Cho, Il-Joo;Bu, Jong-Uk
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Silicon nitride cantilevers integrated with silicon heaters and piezoelectric sensors were developed for the scanning probe microscope (SPM) based data storage application. These nitride cantilevers are expected to have better mechanical stability and uniformity of initial bending than the previously developed silicon cantilevers. Data bits of 40 nm in diameter were recorded on PMMA film and the sensitivity of the piezoelectric sensor was 0.615 fC/nm, meaning that indentations less than 20 nm in depth can be detected. For high speed operation, $128{\times}128$ cantilever array was developed.

Simultaneous Detection Properties of Organic Vapor, Pressure Difference and Magnetic Field using a Rugate-structured Free-standing Porous Silicon Film (Rugate 구조를 갖는 자립형 다공성 실리콘 박막을 이용한 유기 증기, 압력차, 자기장의 동시 감응 특성)

  • Han, Seong-Beom;Lee, Ki Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.186-191
    • /
    • 2017
  • In this study, we investigated the simultaneous detection properties of organic vapor, pressure difference, and magnetic field using a single rugate-structured free-standing porous silicon (RFPS) thin film. Both the wavelength and the intensity of the rugate peaks were changed in the reflectivity spectrum measured at the thin film surface while the organic vapor was exposed to the RFPS thin film. However, when the pressure difference and the magnetic field were exposed to the film, only the rugate peak intensity was changed. Therefore, it is possible to distinguish whether or not the organic vapor is detected by simultaneously changing the rugate peak wavelength and intensity. In addition, a method of distinguishing between the pressure difference and the magnetic field detection signal has been derived by rapidly modulating the direction of the magnetic field. This study shows that it is possible to simultaneously detect and distinguish various objects using a single RFPS thin film, and it is found that porous silicon can be utilized as a sensor sufficiently.

C-V Response Properties of Alcohol Vapor Sensors Based on Porous Silicon (다공질 실리콘 알코올 가스 센서의 C-V 응답 특성)

  • Kim, Seong-Jeen;Lee, Sang-Hoon;Choi, Bok-Gil;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 2004
  • Porous silicon(PS) has received much attention as a sensitive material of chemical sensors because of its large internal surface area. In this work, we fabricated gas-sensing devices based on the porous silicon layer which could be applicable to the measurement of blood alcohol content(BAC), and estimated their electrical properties. The structure of the sensor is similar to an MIS (metal-insulator-semiconductor) diode and consists of thin Au/oxidized PS/PS/p-Si/Al, where the p-Si substrate is etched anisotropically to reduce the thickness. We measured C-V curves from two types of the samples with the PS layer treated by the different anodization current density of 60 or 100 mA/cm$^2$, in order to compare the sensitivity. As a result, the magnitude and variation of capacitances from the devices with the PS formed under the current density of 100 mA/cm$^2$ were found to be more detectable due to the larger internal surface.

Fabrication of a polymerase chain reaction micro-reactor using infrared heating

  • Im, Ki-Sik;Eun, Duk-Soo;Kong, Seong-Ho;Shin, Jang-Kyoo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.337-342
    • /
    • 2005
  • A silicon-based micro-reactor to amplify small amount of deoxyribonucleic acid (DNA) has been fabricated using micro-electro-mechanical systems (MEMS) technology. Polymerase chain reaction (PCR) of DNA requires a precise and rapid temperature control. A Pt sensor is integrated directly in the chamber for real-time temperature measurement and an infrared lamp is used as external heating source for non-contact and rapid heating. In addition to the real-time temperature sensing, PCR needs a rapid thermocycling for effective PCR. For a fast thermal response, the thermal mass of the reactor chamber is minimized by removal of bulk silicon volume around the reactor using double-side KOH etching. The transparent optical property of silicon in the infrared wavelength range provides an efficient absorption of thermal energy into the reacting sample without being absorbed by silicon reactor chamber. It is confirmed that the fabricated micro-reactor could be heated up in less than 30 sec to the denaturation temperature by the external infrared lamp and cooled down in 30 sec to the annealing temperature by passive cooling.

Detection of Organic Vapors Using Change of Fabry-Perot Fringe Pattern of Surface Functionalized Porous Silicon (표면 기능성을 가진 다공성 실리콘의 Fabry-Perot fringe pattern의 변화를 이용한 유기 화합물의 감지)

  • Hwang, Minwoo;Cho, Sungdong
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.168-173
    • /
    • 2010
  • Novel porous silicon chip exhibiting dual optical properties, both Frbry-Perot fringe (optical reflectivity) and photoluminescence had been developed and used as chemical sensors. Porous silicon samples were prepared by an electrochemical etch of p-type sillicon wafer (boron-doped, <100> orientation, resistivity 1 - 10 ${\Omega}$). The ething solution was prepared by adding an equal volume of pure ethanol to an aqueous solution of HF (48% by weight). The porous silicon was illuminated with a 300 W tungsten lamp for the duration of etch. Ething was carried out as a two-electrode Kithley 2420 preocedure at an anodic current. The surface of porous silicon was characterized by FT-IR instrument. The porosity of samples was about 80%. Three different types of porous silicon, fresh porous silicon (Si-H termianated), oxidized porous silicon (Si-OH terminated), and surface-derivatized porous silicon (Si-R terminated), were prepared by the thermal oxidation and hydrosilylation. Then the samples were exposed to the wapor of various organics vapors. such as chloroform, hexane, methanol, benzene, isopropanol, and toluene. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organic wapors.

Fabrication of Pd/NiCr gate MISFET sensor for detecting hydrogen dissolved in Oil. (유중 용존수소 감지를 위한 Pd/NiCr 게이트 MISFET 센서의 제작)

  • Kim, Gop-Sick;Lee, Jae-Gon;Hahm, Sung-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 1997
  • The Pd/NiCr gate MISFET-type sensors were fabricated for detecting hydrogen dissolved in high-capacivity transformer oil. To improve stability and high concentration sensitivity of the sensor, Pd/NiCr double catalysis metal gate was used. To reduce the serious gate voltage drift of the sensor induced by hydrogen, the gate insulators of 2 FETs were constructed with double layer of silicon dioxide and silicon nitride. The hydrogen sensitivity of the Pd/NiCr gate MISFET is about a half of Pd/Pt gate MISFET's sensitivity but the Pd/NiCr gate MISFET has good stability and high concentration detectivity up to 1000 ppm.

  • PDF