The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.
The effect of $\beta$-$Si_3N_4$ seeding on microstructural development of silicon nitride based materials has been investigated. In particular, to observe more distinctly the abnormal grain growth in pressureless sintering, fine $\alpha$-$Si_3N_4$(mean particle size: 0.26 ${\mu}m$) powder classified by sedimentation method was used. It was possible to prepare silicon nitride with abnormally grown grains under low nitrogen pressure of 1 atm thanks to the heterogeneous nucleation on $Si_3N_4$ seed particles. The size and morphology of silicon nitride grains were strongly influenced by the presence of $\beta$-$Si_3N_4$ seed and overall chemical composition. For specimens with initially low $\beta$-content, the large grains grew without a significant impingement by other large grains. On the contrary, for specimens with initially high $\beta$-content, steric hindrance was effective. The resulting microstructure was less inhomogeneous and characterized by unimodal grain size distribution.
The effect of the $\alpha$/$\beta$ phase fraction on the mechanical properties in silicon nitrides was investigated in part 1. In part II, we describe the role of microstructure on the mechanical properties and contact damage of silicon nitrides with coarse/equiaxed and coarse/elongated microstructures. Grain sizes and shapes were controlled by starting powder. Hertzian indentation using spherical indenter was also used to investigate contact damage behavior. Cone cracks from the spherical indentation were suppressed when the silicon nitride contains coarse and elongated grains. Coarse and elongated grains played an important role of cone crack suppression. The size of quasi-plastic zone does not depend on grain size or shape but depends on the fraction of $\alpha$/$\beta$ phase. A quasi-plastic zone was consisting of microcracks by shear stress during indentation.
The effect of the processing parameters on the sintered density and strength of silica-bonded SiC (SBSC) ceramics was investigated for three types of batches with different particle sizes. The SBSC ceramics were fabricated by an oxidation-bonding process. The process involves the sintering of powder compacts in air so that the SiC particles bond to each other by oxidation-derived $SiO_2$ glass or cristobalite. A finding of this study was that a higher flexural strength was obtained when the starting powder was smaller. When a ${\sim}0.3_{-{\mu}m}$ SiC powder was used as a starting powder, a high strength of $257{\pm}42\;MPa$ was achieved at a relative density of ${\sim}80%$.
High purity Si-C (99.999%) powder prepared by mechanical alloying was added to a commercial SiC powder as a sintering additive. Reaction bonded silicon carbide balls and jars with high purity (99.98%) were used for the mechanical alloying. As a result, the purity of the sintered Si-C was higher than 99.99%. When sintered at $2200^{\circ}C$ under 50 MPa pressure for 1 h, SiC containing 10 wt% of high purity Si-C showed a relative density of 95.3%, similar to the relative density of commercial SiC (95%). However, the relative density of SiC decreased to 90.6% without the additive when the applied pressure decreased to 40 MPa. In contrast, the relative density was nearly unaffected by the decrease of the pressure when using the Si-C additive. Therefore, the addition of Si-C powder promoted the densification of SiC above $2000^{\circ}C$ under 40 MPa pressure.
Choi, Won June;Park, Chun Woong;Kim, Young Do;Byun, Jong Min
Journal of Powder Materials
/
v.25
no.5
/
pp.402-407
/
2018
Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicide-based composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and ${\beta}-SiC$ as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed ${\beta}-SiC$ are fabricated using pressureless sintering. The relative density of the specimens sintered at $1500^{\circ}C$ for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.
Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
Journal of the Korean Ceramic Society
/
v.43
no.8
s.291
/
pp.472-478
/
2006
The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.
Macroporous silicon carbide (SiC) ceramics were fabricated by powder processing and polymer processing using carbon-filled polysiloxane as a precursor. The effects of the starting SiC polytype, template type, and template content on porosity and flexural strength of macroporous SiC ceramics were investigated. The ${\beta}$-SiC powder as a starting material or a filler led to higher porosity than ${\alpha}$-SiC powder, owing to the impingement of growing ${\alpha}$-SiC grains, which were transformed from ${\beta}$-SiC during sintering. Typical flexural strength of powder-processed macroporous SiC ceramics fabricated from ${\alpha}$-SiC starting powder and polymer microbeads was 127 MPa at 29% porosity. In contrast, that of polymer-processed macroporous SiC ceramics fabricated from carbon-filled polysiloxane, ${\beta}$-SiC fillers, and hollow microspheres was 116MPa at 29% porosity. The combination of ${\alpha}$-SiC starting powder and a fairly large amount (10 wt%) of $Al_2O_3-Y_2O_3$ additives led to macroporous SiC ceramics with excellent flexural strength.
The effect of $\alpha$/$\beta$ phase on the mechanical properties and contact damage of silicon nitrides $Si_3N_4$) was investigated. Silicon nitride materials were prepared from two starting powders, at selective increasing hot-pressing temperatures to coarsen the microstructures: (i) from relatively coarse $\alpha$-phase powder, essentially equiaxed $\alpha$-$Si_3N_4$ grains, with limited, slow transformation to $\beta$-$Si_3N_4$ grain; (ii) from relatively fine $\alpha$-phase powder, a more rapid transformation to $\beta$-$Si_3N_4$, with attendant grain elongation. The resulting micro-structure thereby provided a spectrum of $\alpha$/$\beta$ phase ratios, grain sizes, and grain shapes. Fracture strength, hardness, and toughness were measured, and contact damage and strength degradation after indentation were investigated by Hertzian indentation using spherical indenter. A brittle to ductile transition in $Si_3N_4$ depended on $\alpha$/$\beta$ phase ratio as well as grain size. Silicon nitride with elongated $\beta$ grains showed a superior, contact damage resistance.
Anodic aluminum oxide (AAO) has been widely used for the development and fabrication of nano-powder with various morphologies such as particle, wire, rod, and tube. So far, many researchers have reported about shape control and fabrication of AAO films. However, they have reported on the shape control with different diameter and length of anodic aluminum oxide mainly. We present a combined mild-hard (or hard-mild) anodization to prepare shape-controlled AAO films. Two main parameters which are combination mild-hard (or hard-mild) anodization and run-time of voltage control are applied in this work. The voltages of mild and hard anodization are respectively 40 and 80 V. Anodization was conducted on the aluminum sheet in 0.3 mole oxalic acid at $4^{\circ}C$. AAO films with morphologies of varying interpore distance, branch-shaped pore, diameter-modulated pore and long funnel-shaped pore were fabricated. Those shapes will be able to apply to fabricate novel nano-materials with potential application which is especially a support to prevent volume expansion of inserted active materials, such as metal silicon or tin powder, in lithium ion battery. The silicon powder electrode using an AAO as a support shows outstanding cycle performance as 1003 mAh/g up to 200 cycles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.